Skip to main content

Supportive Medical Management of Brain Metastases Patients Including Treatment Complications

  • Chapter
  • First Online:
Radiotherapy in Managing Brain Metastases

Abstract

Brain metastases are the most common intracranial neoplasms and are associated with an array of clinical problems that require complex medical management. These include focal neurologic deficits, seizures, cognitive impairment, and headache. We will review the data regarding the management of these problems. Iatrogenic sequelae and radiotherapy-related complications such as radiation necrosis will also be specifically addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis FG, Dolecek TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology. 2012;14(9):1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Noh T, Walbert T. Brain metastasis: clinical manifestations, symptom management, and palliative care. In: Handbook of clinical neurology [Internet]. Elsevier; 2018 [cited 2019 Apr 13]. p. 75–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128111611000062.

  3. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14(1):48–54.

    Article  PubMed  Google Scholar 

  4. Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal [Internet]. 2008 [cited 2019 Apr 13];6(1). Available from: https://biosignal.biomedcentral.com/articles/10.1186/1478-811X-6-10.

  5. Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way: microglia promote brain metastasis. Glia. 2010;58(12):1477–89.

    Article  PubMed  Google Scholar 

  6. Nguyen DX, Chiang AC, Zhang XH-F, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Senger DR, Van De Water L, Brown LF, Nagy JA, Yeo K-T, Yeo T-K, et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993;12(3–4):303–24.

    Article  PubMed  CAS  Google Scholar 

  8. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36.

    Article  PubMed  Google Scholar 

  9. Dobrogowska DH, Lossinsky AS, Tarnawski M, Vorbrodt AW. Increased blood–brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J Neurocytol. 1998;27(3):163–73.

    Article  PubMed  CAS  Google Scholar 

  10. da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci [Internet]. 2014 [cited 2019 Apr 13];8. Available from: http://journal.frontiersin.org/article/10.3389/fncel.2014.00362/abstract.

  11. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fidler IJ. The biology of brain metastasis. Cancer J. 2015;21(4):10.

    Article  CAS  Google Scholar 

  13. Lowery FJ, Yu D. Brain metastasis: unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer. 2017;1867(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  14. Kim S-J, Kim J-S, Park ES, Lee J-S, Lin Q, Langley RR, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia. 2011;13(3):286–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.

    Article  PubMed  Google Scholar 

  16. Galldiks N, Langen K-J, Albert NL, Chamberlain M, Soffietti R, Kim MM, et al. PET imaging in patients with brain metastasis—report of the RANO/PET group. Neuro-Oncology [Internet]. 2019 [cited 2019 Apr 13]; Available from: https://academic.oup.com/neuro-oncology/advance-article/doi/10.1093/neuonc/noz003/5274178.

  17. Schneider T, Kuhne JF, Bittrich P, Schroeder J, Magnus T, Mohme M, et al. Edema is not a reliable diagnostic sign to exclude small brain metastases. Ahmad A, editor. PLOS ONE. 2017;12(5):e0177217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Walcott BP, Kahle KT, Simard JM. Novel treatment targets for cerebral edema. Neurotherapeutics. 2012;9(1):65–72.

    Article  PubMed  Google Scholar 

  19. Wen PY, Schiff D, Kesari S, Drappatz J, Gigas DC, Doherty L. Medical management of patients with brain tumors. J Neuro-Oncol. 2006;80(3):313–32.

    Article  CAS  Google Scholar 

  20. Bebawy JF. Perioperative steroids for peritumoral intracranial edema: a review of mechanisms, efficacy, and side effects. J Neurosurg Anesthesiol. 2012;24(3):5.

    Article  Google Scholar 

  21. Spanberger T, Berghoff AS, Dinhof C, Ilhan-Mutlu A, Magerle M, Hutterer M, et al. Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin Exp Metastasis. 2013;30(4):357–68.

    Article  PubMed  CAS  Google Scholar 

  22. Kerschbaumer J, Bauer M, Popovscaia M, Grams AE, Thomé C, Freyschlag CF. Correlation of tumor and peritumoral edema volumes with survival in patients with cerebral metastases. Anticancer Res. 2017;37(2):871–6.

    Article  PubMed  Google Scholar 

  23. Calluaud G, Terrier L-M, Mathon B, Destrieux C, Velut S, François P, et al. Peritumoral edema/tumor volume ratio: a strong survival predictor for posterior fossa metastases. Neurosurgery [Internet]. 2018 [cited 2019 Apr 13]; Available from: https://academic.oup.com/neurosurgery/advance-article/doi/10.1093/neuros/nyy222/5035747.

  24. McClelland S, Long DM. Genesis of the use of corticosteroids in the treatment and prevention of brain edema. Neurosurgery. 2008;62(4):965–8.

    Article  PubMed  Google Scholar 

  25. Galicich JH, French LA, Melby JC. Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet. 1961;81:46–53.

    PubMed  CAS  Google Scholar 

  26. Ryken TC, Kuo JS, Prabhu RS, Sherman JH, Kalkanis SN, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of steroids in the treatment of adults with metastatic brain tumors. Neurosurgery. 2019;84(3):E189–91.

    Article  PubMed  Google Scholar 

  27. Batchelor T, DeAngelis LM. Medical Management of Cerebral Metastases. Neurosurg Clin N Am. 1996;7(3):435–46.

    Article  PubMed  CAS  Google Scholar 

  28. Black KL, Hoff JT, McGillicuddy JE, Gebarski SS. Increased leukotriene C4 and vasogenic edema surrounding brain tumors in humans. Ann Neurol. 1986;19(6):592–5.

    Article  PubMed  CAS  Google Scholar 

  29. Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci. 2015;16(12):9949–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS. Molecular mechanisms of brain tumor edema. Neuroscience. 2004;129(4):1009–18.

    Article  CAS  Google Scholar 

  31. Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst. 2016;32(12):2293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weissman DE, Dufer D, Vogel V, Abeloff MD. Corticosteroid toxicity in neuro-oncology patients. J Neuro-Oncol. 1987;5(2):125–8.

    Article  CAS  Google Scholar 

  33. Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, et al. The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):103–14.

    Article  CAS  Google Scholar 

  34. Vecht CJ, Hovestadt A, Verbiest HBC, van Vliet JJ, van Putten WLJ. Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology. 1994;44(4):675.

    Article  PubMed  CAS  Google Scholar 

  35. Weissman DE, Janjan NA, Erickson B, Wilson FJ, Greenberg M, Ritch PS, et al. Twice-daily tapering dexamethasone treatment during cranial radiation for newly diagnosed brain metastases. J Neuro-Oncol. 1991;11(3):235–9.

    Article  CAS  Google Scholar 

  36. Ryan R, Booth S, Price S. Corticosteroid-use in primary and secondary brain tumour patients: a review. J Neuro-Oncol. 2012;106(3):449–59.

    Article  CAS  Google Scholar 

  37. Hempen C, Weiss E, Hess CF. Dexamethasone treatment in patients with brain metastases and primary brain tumors: do the benefits outweigh the side-effects? Support Care Cancer. 2002;10(4):322–8.

    Article  PubMed  Google Scholar 

  38. Conn HO, Blitzer BL. Nonassociation of adrenocorticosteroid therapy and peptic ulcer. N Engl J Med. 1976;294(9):473–9.

    Article  PubMed  CAS  Google Scholar 

  39. Messer J, Reitman D, Sacks HS, Smith H, Chalmers TC. Association of adrenocorticosteroid therapy and peptic-ulcer disease. N Engl J Med. 1983;309(1):21–4.

    Article  PubMed  CAS  Google Scholar 

  40. Conn HO, Poynard T. Adrenocorticosteroid administration and peptic ulcer: a critical analysis. J Chronic Dis. 1985;38(6):457–68.

    Article  PubMed  CAS  Google Scholar 

  41. Gøtzsche PC. Steroids and peptic ulcer: an end to the controversy? J Intern Med. 1994;236(6):599–601.

    Article  PubMed  Google Scholar 

  42. Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: a systematic review and meta-analysis. BMJ Open. 2014;4(5):e004587.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kondo Y, Hatta W, Koike T, Takahashi Y, Saito M, Kanno T, et al. The use of higher dose steroids increases the risk of rebleeding after endoscopic hemostasis for peptic ulcer bleeding. Dig Dis Sci. 2018;63(11):3033–40.

    Article  PubMed  CAS  Google Scholar 

  44. Tseng C-L, Chen Y-T, Huang C-J, Luo J-C, Peng Y-L, Huang D-F, et al. Short-term use of glucocorticoids and risk of peptic ulcer bleeding: a nationwide population-based case-crossover study. Aliment Pharmacol Ther. 2015;42(5):599–606.

    Article  PubMed  CAS  Google Scholar 

  45. Piper JM. Corticosteroid use and peptic ulcer disease: role of nonsteroidal anti-inflammatory drugs. Ann Intern Med. 1991;114(9):735.

    Article  PubMed  CAS  Google Scholar 

  46. Baden LR, Swaminathan S, Angarone M, Blouin G, Camins BC, Casper C, et al. Prevention and treatment of cancer-related infections, version 2.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(7):882–913.

    Article  CAS  Google Scholar 

  47. Yale SH, Limper AH. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illnesses and prior corticosteroid therapy. Mayo Clin Proc. 1996;71(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  48. Calero-Bernal ML, Martin-Garrido I, Donazar-Ezcurra M, Limper AH, Carmona EM. Intermittent courses of corticosteroids also present a risk for Pneumocystis pneumonia in non-HIV patients. Can Respir J. 2016;2016:1–7.

    Article  Google Scholar 

  49. Wick W, Küker W. Brain edema in neurooncology: radiological assessment and management. Oncol Res Treat. 2004;27(3):261–6.

    Article  CAS  Google Scholar 

  50. LoPiccolo J, Mehta SA, Lipson EJ. Corticosteroid use and pneumocystis pneumonia prophylaxis: a teachable moment. JAMA Intern Med. 2018;178(8):1106.

    Article  PubMed  Google Scholar 

  51. Giles AJ, Hutchinson M-KND, Sonnemann HM, Jung J, Fecci PE, Ratnam NM, et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer [Internet]. 2018 [cited 2019 Apr 13];6(1). Available from: https://jitc.biomedcentral.com/articles/10.1186/s40425-018-0371-5.

  52. Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol. 2017;35(7):785–92.

    Article  PubMed  CAS  Google Scholar 

  53. Berghoff AS, Preusser M. Anti-angiogenic therapies in brain metastases. memo – Mag Eur Med Oncol. 2018;11(1):14–7.

    Google Scholar 

  54. Banks PD, Lasocki A, Lau PKH, Sandhu S, McArthur G, Shackleton M. Bevacizumab as a steroid-sparing agent during immunotherapy for melanoma brain metastases: a case series. Health Sci Rep. 2019;2(3):e115.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Wang E, Pan L, Dai J, Zhang N, Wang X, et al. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema. J Neuro-Oncol. 2014;119(2):369–76.

    Article  CAS  Google Scholar 

  56. Hapani S, Chu D, Wu S. Risk of gastrointestinal perforation in patients with cancer treated with bevacizumab: a meta-analysis. Lancet Oncol. 2009;10(6):559–68.

    Article  PubMed  CAS  Google Scholar 

  57. Saif MW, Elfiky A, Salem RR. Gastrointestinal perforation due to bevacizumab in colorectal cancer. Ann Surg Oncol. 2007;14(6):1860–9.

    Article  PubMed  Google Scholar 

  58. Khasraw M, Holodny A, Goldlust SA, DeAngelis LM. Intracranial hemorrhage in patients with cancer treated with bevacizumab: the memorial Sloan-Kettering experience. Ann Oncol. 2012;23(2):458–63.

    Article  PubMed  CAS  Google Scholar 

  59. Carden CP, Larkin JMG, Rosenthal MA. What is the risk of intracranial bleeding during anti-VEGF therapy? Neuro-Oncology. 2008;10(4):624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Besse B, Lasserre SF, Compton P, Huang J, Augustus S, Rohr U-P. Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res. 2010;16(1):269–78.

    Article  CAS  PubMed  Google Scholar 

  61. Socinski MA, Langer CJ, Huang JE, Kolb MM, Compton P, Wang L, et al. Safety of bevacizumab in patients with non–small-cell lung cancer and brain metastases. J Clin Oncol. 2009;27(31):5255–61.

    Article  PubMed  CAS  Google Scholar 

  62. Gordon CR, Rojavin Y, Patel M, Zins JE, Grana G, Kann B, et al. A review on bevacizumab and surgical wound healing: an important warning to all surgeons. Ann Plast Surg. 2009;62(6):707–9.

    Article  PubMed  CAS  Google Scholar 

  63. Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol. 2009;6(4):229–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Eichler AF, Loeffler JS. Multidisciplinary management of brain metastases. Oncologist. 2007;12(7):884–98.

    Article  PubMed  CAS  Google Scholar 

  65. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology. 2006;66(8):1258–60.

    Article  PubMed  CAS  Google Scholar 

  66. Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, et al. Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: analysis of 639 cases. Neuropathol Appl Neurobiol. 2015;41(2):e41–55.

    Article  PubMed  CAS  Google Scholar 

  67. Wei ET, Gao GC. Corticotropin-releasing factor: an inhibitor of vascular leakage in rat skeletal muscle and brain cortex after injury. Regul Pept. 1991;33(2):93–104.

    Article  PubMed  CAS  Google Scholar 

  68. Tjuvajev J, Uehara H, Desai R, Beattie B, Matei C, Zhou Y, et al. Corticotropin-releasing factor decreases vasogenic brain edema. Cancer Res. 1996;56(6):1352–60.

    PubMed  CAS  Google Scholar 

  69. Villalona-Calero MA, Eckardt J, Burris H, Kraynak M, Fields-Jones S, Bazan C, et al. A phase I trial of human corticotropin-releasing factor (hCRF) in patients with peritumoral brain edema. Ann Oncol. 1998;9(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  70. Recht L, Mechtler LL, Wong ET, O’Connor PC, Rodda BE. Steroid-sparing effect of corticorelin acetate in peritumoral cerebral edema is associated with improvement in steroid-induced myopathy. J Clin Oncol. 2013;31(9):1182–7.

    Article  PubMed  CAS  Google Scholar 

  71. Recht LD, Mechtler L, Phuphanich S, Hormigo A, Hines V, Milsted R, et al. A placebo-controlled study investigating the dexamethasone-sparing effects of corticorelin acetate in patients with primary or metastatic brain tumors and peritumoral edema. J Clin Oncol. 2009;27(15_suppl):2078.

    Article  Google Scholar 

  72. Shapiro WR, Mechtler L, Cher L, Wheeler H, Hines V, Milsted R, et al. A randomized, double-blind study comparing corticorelin acetate with dexamethasone in patients with primary malignant glioma who require increased dexamethasone doses to control symptoms of peritumoral brain edema. J Clin Oncol. 2009;27(15_suppl):2080.

    Article  Google Scholar 

  73. Mechtler L, Wong ET, Hormigo A, Pannullo S, Hines V, Milsted R, et al. A long-term open-label extension study examining the steroid-sparing effects of corticorelin acetate in patients with cerebral tumors. J Clin Oncol. 2009;27(15_suppl):2079.

    Article  Google Scholar 

  74. Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(8):1388–98.

    Article  PubMed  CAS  Google Scholar 

  75. Gabrielian L, Helps SC, Thornton E, Turner RJ, Leonard AV, Vink R. Substance P antagonists as a novel intervention for brain edema and raised intracranial pressure. In: Katayama Y, Maeda T, Kuroiwa T, editors. Brain edema XV [Internet]. Vienna: Springer Vienna; 2013 [cited 2019 Apr 16]. p. 201–4. Available from: http://link.springer.com/10.1007/978-3-7091-1434-6_37.

    Chapter  Google Scholar 

  76. Turner RJ, Helps SC, Thornton E, Vink R. A substance P antagonist improves outcome when administered 4 h after onset of ischaemic stroke. Brain Res. 2011;1393:84–90.

    Article  PubMed  CAS  Google Scholar 

  77. Harford-Wright E, Lewis KM, Ghabriel MN, Vink R. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors. Alonso MM, editor. PLoS ONE. 2014;9(5):e97002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rutz HP. Effects of corticosteroid use on treatment of solid tumours. Lancet. 2002;360(9349):1969–70.

    Article  PubMed  CAS  Google Scholar 

  79. Bannwarth B, Netter P, Lapicque F, Péré P, Thomas P, Gaucher A. Plasma and cerebrospinal fluid concentrations of indomethacin in humans: relationship to analgesic activity. Eur J Clin Pharmacol. 1990;38(4):343–6.

    Article  PubMed  CAS  Google Scholar 

  80. Cotev S, Shapira Y, Davidson E, Wiedenfeld Y, Icu ES. Indomethacin reduces cerebral prostaglandin synthesis but not edema after experimental head injury. Crit Care Med. 1987;15(4):370.

    Article  Google Scholar 

  81. Deluga KS, Plötz FB, Betz AL. Effect of indomethacin on edema following single and repetitive cerebral ischemia in the gerbil. Stroke. 1991;22(10):1259–64.

    Article  PubMed  CAS  Google Scholar 

  82. Ambrus JL, Halpern J, Baerwald H, Johnson RJ. Cyclo-oxygenase and lipo-oxygenase inhibitors may substitute for steroid treatment in brain oedema. Lancet. 1985;2(8447):148–9.

    Article  PubMed  CAS  Google Scholar 

  83. Weissman DE, Stewart C. Experimental drug therapy of peritumoral brain edema. J Neuro-Oncol [Internet]. 1988 [cited 2019 Apr 17];6(4). Available from: http://link.springer.com/10.1007/BF00177429.

  84. Nathoo N. The eicosanoid cascade: possible role in gliomas and meningiomas. J Clin Pathol. 2004;57(1):6–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Badie B, Schartner JM, Hagar AR, Prabakaran S, Peebles TR, Bartley B, et al. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res. 2003;9(2):872–7.

    PubMed  CAS  Google Scholar 

  86. Castelli MG, Chiabrando C, Fanelli R, Martelli L, Butti G, Gaetani P, et al. Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res. 1989;49(6):1505–8.

    PubMed  CAS  Google Scholar 

  87. Chu K, Jeong S-W, Jung K-H, Han S-Y, Lee S-T, Kim M, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab. 2004;24(8):926–33.

    Article  PubMed  CAS  Google Scholar 

  88. Lee S-H, Park H-K, Ryu W-S, Lee J-S, Bae H-J, Han M-K, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol. 2013;20(8):1161–9.

    Article  PubMed  Google Scholar 

  89. Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res. 2004;64(6):2030–8.

    Article  PubMed  CAS  Google Scholar 

  90. Dembo G, Park SB, Kharasch ED. Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology. 2005;102(2):409–15.

    Article  PubMed  CAS  Google Scholar 

  91. Rutz HP, Hofer S, Peghini PE, Gutteck-Amsler U, Rentsch K, Meier-Abt PJ, et al. Avoiding glucocorticoid administration in a neurooncological case. Cancer Biol Ther. 2005;4(11):1186–9.

    Article  PubMed  Google Scholar 

  92. Lenzer J. FDA advisers warn: COX 2 inhibitors increase risk of heart attack and stroke. BMJ. 2005;330(7489):440.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Streffer JR, Bitzer M, Schabet M, Dichgans J, Weller M. Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15. Neurology. 2001;56(9):1219–21.

    Article  PubMed  CAS  Google Scholar 

  94. Kirste S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K, et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer. 2011;117(16):3788–95.

    Article  PubMed  Google Scholar 

  95. Glaser T, Winter S, Groscurth P, Safayhi H, Sailer E-R, Ammon HPT, et al. Boswellic acids and malignant glioma: induction of apoptosis but no modulation of drug sensitivity. Br J Cancer. 1999;80(5–6):756–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sterk V, Büchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med. 2004;70(12):1155–60.

    Article  PubMed  CAS  Google Scholar 

  97. Burger PC, Mahaley MS, Dudka L, Vogel FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas. A Postmortem study of 25 cases. Cancer. 1979;44(4):1256–72.

    Article  PubMed  CAS  Google Scholar 

  98. Fink J, Born D, Chamberlain MC. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr Neurol Neurosci Rep. 2012;12(3):276–85.

    Article  PubMed  Google Scholar 

  99. Constine LS, Konski A, Ekholm S, McDonald S, Rubin P. Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys. 1988;15(2):319–30.

    Article  PubMed  CAS  Google Scholar 

  100. Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghei P, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):1343–59.

    Article  PubMed  Google Scholar 

  101. Eissner G, Kohlhuber F, Grell M, Ueffing M, Scheurich P, Hieke A. Critical involvement of transmembrane tumor necrosis factor-cu in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood. 1995;86(11):4184–93.

    Article  PubMed  CAS  Google Scholar 

  102. Yoshii Y. Pathological review of late cerebral radionecrosis. Brain Tumor Pathol. 2008;25(2):51–8.

    Article  PubMed  Google Scholar 

  103. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chung C, Bryant A, Brown PD. Interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. Cochrane Gynaecological, Neuro-oncology and Orphan Cancer Group, editor. Cochrane Database Syst Rev [Internet]. 2018 [cited 2019 Apr 13]; Available from: http://doi.wiley.com/10.1002/14651858.CD011492.pub2.

  105. McPherson CM, Warnick RE. Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neuro-Oncol. 2004;68(1):41–7.

    Article  Google Scholar 

  106. Eyster EF, Nielsen SL, Sheline GE, Wilson CB. Cerebral radiation necrosis simulating a brain tumor. J Neurosurg. 1974;40(2):267–71.

    Article  PubMed  CAS  Google Scholar 

  107. Shaw PJ, Bates D. Conservative treatment of delayed cerebral radiation necrosis. J Neurol Neurosurg Psychiatry. 1984;47(12):1338–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Furuse M, Nonoguchi N, Kawabata S, Miyatake S-I, Kuroiwa T. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol. 2015;48(4):183–90.

    Article  PubMed  CAS  Google Scholar 

  109. Gonzalez J, Kumar AJ, Conrad CA, Levin VA. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007;67(2):323–6.

    Article  PubMed  CAS  Google Scholar 

  110. Deibert CP, Ahluwalia MS, Sheehan JP, Link MJ, Hasegawa T, Yomo S, et al. Bevacizumab for refractory adverse radiation effects after stereotactic radiosurgery. J Neuro-Oncol. 2013;115(2):217–23.

    Article  CAS  Google Scholar 

  111. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bennett MH, Feldmeier J, Hampson NB, Smee R, Milross C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Gynaecological, Neuro-oncology and Orphan Cancer Group, editor. Cochrane Database Syst Rev [Internet]. 2016 [cited 2019 Apr 13]; Available from: http://doi.wiley.com/10.1002/14651858.CD005005.pub4.

  113. Hary GB, Mainous EG. The treatment of radiation necrosis with hyperbaric oxygen (OHP). Cancer. 1976;37(6):2580–5.

    Article  Google Scholar 

  114. Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, et al. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997;80(10):2005–12.

    Article  PubMed  CAS  Google Scholar 

  115. Tang Y, Rong X, Hu W, Li G, Yang X, Yang J, et al. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. J Neuro-Oncol. 2014;120(2):441–7.

    Article  CAS  Google Scholar 

  116. Rizzoli HV, Pagnanelli DM. Treatment of delayed radiation necrosis of the brain. J Neurosurg. 1984;60(3):589–94.

    Article  PubMed  CAS  Google Scholar 

  117. Dion MW, Hussey DH, Doornbos JF, Vigliotti AP, Wen B-C, Anderson B. Preliminary results of a pilot study of pentoxifylline in the treatment of late radiation soft tissue necrosis. Int J Radiat Oncol Biol Phys. 1990;19(2):401–7.

    Article  PubMed  CAS  Google Scholar 

  118. Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg. 2008;86(6):359–66.

    Article  PubMed  Google Scholar 

  119. Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg. 2012;90(3):192–200.

    Article  PubMed  Google Scholar 

  120. Fabiano AJ, Alberico RA. Laser-interstitial thermal therapy for refractory cerebral edema from post-radiosurgery metastasis. World Neurosurg. 2014;81(3–4):652.e1–4.

    Article  Google Scholar 

  121. North JB, Hanieh A, Challen Robert G, Penhall Robert K, Hann Christopher S, Frewin DB. Postoperative epilepsy: a double-blind trial of phenytoin after craniotomy. Lancet. 1980;315(8165):384–6.

    Article  Google Scholar 

  122. Forsyth PA, Weaver S, Fulton D, Brasher PMA, Sutherland G, Stewart D, et al. Prophylactic anticonvulsants in patients with brain tumour. Can J Neurol Sci. 2003;30(02):106–12.

    Article  PubMed  Google Scholar 

  123. Glantz MJ, Cole BF, Friedberg MH, Lathi E, Choy H, Furie K, et al. A randomized, blinded, placebo-controlled trial of divalproex sodium prophylaxis in adults with newly diagnosed brain tumors. Neurology. 1996;46(4):985–91.

    Article  PubMed  CAS  Google Scholar 

  124. Wu AS, Trinh VT, Suki D, Graham S, Forman A, Weinberg JS, et al. A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J Neurosurg. 2013;118(4):873–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Franceschetti S, Binelli S, Casazza M, Lodrini S, Panzica F, Pluchino F, et al. Influence of surgery and antiepileptic drugs on seizures symptomatic of cerebral tumours. Acta Neurochir. 1990;103(1–2):47–51.

    Article  PubMed  CAS  Google Scholar 

  126. Ansari SF, Bohnstedt BN, Perkins SM, Althouse SK, Miller JC. Efficacy of postoperative seizure prophylaxis in intra-axial brain tumor resections. J Neuro-Oncol. 2014;118(1):117–22.

    Article  Google Scholar 

  127. Tremont-Lukats IW, Ratilal BO, Armstrong T, Gilbert MR. Antiepileptic drugs for preventing seizures in people with brain tumors. Cochrane Database Syst Rev [Internet]. 2008 [cited 2019 Apr 20];(2). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004424.pub2/abstract.

  128. Chen CC, Rennert RC, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines on the role of prophylactic anticonvulsants in the treatment of adults with metastatic brain tumors. Neurosurgery. 2019;84(3):E195–7.

    Article  PubMed  Google Scholar 

  129. Chang SM, Messersmith H, Ahluwalia M, Andrews D, Brastianos PK, Gaspar LE, et al. Anticonvulsant prophylaxis and steroid use in adults with metastatic brain tumors: summary of SNO and ASCO endorsement of the Congress of Neurological Surgeons guidelines. Neuro-Oncology. 2019;21(4):424–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Glantz MJ, Cole BF, Forsyth PA, Recht LD, Wen PY, Chamberlain MC, et al. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors: report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2000;54(10):1886–93.

    Article  PubMed  CAS  Google Scholar 

  131. Waxman DJ, Azaroff L. Phenobarbital induction of cytochrome P -450 gene expression. Biochem J. 1992;281(3):577–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Jusko WJ, Koup JR, Alván G. Nonlinear assessment of phenytoin bioavailability. J Pharmacokinet Biopharm. 1976;4(4):327–36.

    Article  PubMed  CAS  Google Scholar 

  133. Monks A, Boobis S, Wadsworth J, Richens A. Plasma protein binding interaction between phenytoin and valproic acid in vitro. Br J Clin Pharmacol. 1978;6(6):487–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Chokshi R, Openshaw J, Mehta NN, Mohler E. Purple glove syndrome following intravenous phenytoin administration. Vasc Med. 2007;12(1):29–31.

    Article  PubMed  Google Scholar 

  135. Ferrell PB, McLeod HL. Carbamazepine, HLA-B∗1502 and risk of Stevens–Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9(10):1543–6.

    Article  PubMed  CAS  Google Scholar 

  136. Tran TA, Leppik IE, Blesi K, Sathanandan ST, Remmel R. Lamotrigine clearance during pregnancy. Neurology. 2002;59(2):251–5.

    Article  PubMed  CAS  Google Scholar 

  137. Sabers A, Buchholt JM, Uldall P, Hansen EL. Lamotrigine plasma levels reduced by oral contraceptives. Epilepsy Res. 2001;47(1–2):151–4.

    Article  PubMed  CAS  Google Scholar 

  138. Turnbull DM, Rawlins MD, Weightman D, Chadwick DW. Plasma concentrations of sodium valproate: their clinical value. Ann Neurol. 1983;14(1):38–42.

    Article  PubMed  CAS  Google Scholar 

  139. Marcotte D. Use of topiramate, a new anti-epileptic as a mood stabilizer. J Affect Disord. 1998;50(2–3):245–51.

    Article  CAS  PubMed  Google Scholar 

  140. Leppik IE. Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure. 2004;13:S5–9.

    Article  PubMed  Google Scholar 

  141. Rosenstiel P. Brivaracetam (UCB 34714). Neurotherapeutics. 2007;4(1):84–7.

    Article  Google Scholar 

  142. Biton V, Berkovic SF, Abou-Khalil B, Sperling MR, Johnson ME, Lu S. Brivaracetam as adjunctive treatment for uncontrolled partial epilepsy in adults: a phase III randomized, double-blind, placebo-controlled trial. Epilepsia. 2014;55(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  143. Doty P, Rudd GD, Stoehr T, Thomas D. Lacosamide. Neurotherapeutics. 2007;4(1):145–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  144. Kaufman DW, Kelly JP, Anderson T, Harmon DC, Shapiro S. Evaluation of case reports of aplastic anemia among patients treated with felbamate. Epilepsia. 1997;38(12):1265–9.

    Article  PubMed  CAS  Google Scholar 

  145. Seibert TM, Karunamuni R, Kaifi S, Burkeen J, Connor M, Krishnan AP, et al. Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol Biol Phys. 2017;97(5):910–8.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rapp SR, Case LD, Peiffer A, Naughton MM, Chan MD, Stieber VW, et al. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol. 2015;33(15):1653–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Shaw EG, Rosdhal R, D’Agostino RB, Lovato J, Naughton MJ, Robbins ME, et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24(9):1415–20.

    Article  PubMed  CAS  Google Scholar 

  149. Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Magge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, P.C., Donovan, L.E., Magge, R.S. (2020). Supportive Medical Management of Brain Metastases Patients Including Treatment Complications. In: Yamada, Y., Chang, E., Fiveash, J., Knisely, J. (eds) Radiotherapy in Managing Brain Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-43740-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43740-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43739-8

  • Online ISBN: 978-3-030-43740-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics