Skip to main content

Image Guidance for Frameless Radiosurgery Including Surface Mapping

  • Chapter
  • First Online:
Radiotherapy in Managing Brain Metastases

Abstract

This chapter describes recent advancements in image guidance and optical surface mapping that have made frameless cranial radiosurgery feasible. A clinical case is first briefly discussed to demonstrate the need to develop a flexible frameless radiosurgery technique, followed by a general background of cranial radiosurgery. The frameless radiosurgery technique is described, including the patient immobilization system, various image guidance systems with emphasis on optical surface imaging for real-time pre-setup patient alignment and on-treatment motion monitoring, and the need for staff training and credentialing. The accuracies of these systems are discussed to demonstrate that the frameless radiosurgery can achieve adequate spatial accuracy with improved patient comfort, enhanced capability, and additional clinical flexibility. Finally, some clinical recommendations and future directions are provided based on our clinical experience with image-guided frameless radiosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen GT, Sharp GC, Mori S. A review of image-guided radiotherapy [published online ahead of print 2009/01/01]. Radiol Phys Technol. 2009;2(1):1–12.

    Article  PubMed  Google Scholar 

  2. Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99.

    Article  CAS  PubMed  Google Scholar 

  3. Li G, Mageras G, Dong L, Mohan R. Image-guided radiation therapy. In: Khan FM, Gerbi BJ, editors. Treatment planning in radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2016. p. 229–58.

    Google Scholar 

  4. Murphy B, Walker J, Bassale S, et al. Concurrent radiosurgery and immune checkpoint inhibition: improving regional intracranial control for patients with metastatic melanoma [published online ahead of print 2018/12/18]. Am J Clin Oncol. 2019;42(3):253–7.

    Article  PubMed  Google Scholar 

  5. Kamath SD, Kumthekar PU. Immune checkpoint inhibitors for the treatment of central nervous system (CNS) metastatic disease. Front Oncol. 2018;8:414.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kirkpatrick JP, Wang Z, Sampson JH, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91(1):100–8.

    Article  PubMed  Google Scholar 

  7. Savitz ST, Chen RC, Sher DJ. Cost-effectiveness analysis of neurocognitive-sparing treatments for brain metastases. Cancer. 2015;121(23):4231–9.

    Article  PubMed  Google Scholar 

  8. Brown PD, Jaeckle K, Ballman KV, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316(4):401–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Palta JR, Liu C, Li JG. Current external beam radiation therapy quality assurance guidance: does it meet the challenges of emerging image-guided technologies? Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S13–7.

    Article  PubMed  Google Scholar 

  10. Friedman WA. Linear accelerator radiosurgery. In: Chin LS, Regine WF, editors. Principles and practice of stereotactic radiosurgery. New York: Springer; 2008. p. 129–40.

    Chapter  Google Scholar 

  11. Schell MC, Bova FJ, Larson DA, et al. Stereotactic radiosurgery. AAPM Report No. 54. 1995. https://www.aapm.org/pubs/reports/RPT_54.pdf.

  12. Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988;22(3):454–64.

    Article  CAS  PubMed  Google Scholar 

  13. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  14. Bova FJ, Buatti JM, Friedman WA, Mendenhall WM, Yang CC, Liu C. The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys. 1997;38(4):875–82.

    Article  CAS  PubMed  Google Scholar 

  15. Ryken TC, Meeks SL, Pennington EC, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys. 2001;51(4):1152–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kamath R, Ryken TC, Meeks SL, Pennington EC, Ritchie J, Buatti JM. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys. 2005;61(5):1467–72.

    Article  PubMed  Google Scholar 

  17. Das S, Isiah R, Rajesh B, et al. Accuracy of relocation, evaluation of geometric uncertainties and clinical target volume (CTV) to planning target volume (PTV) margin in fractionated stereotactic radiotherapy for intracranial tumors using relocatable Gill-Thomas-Cosman (GTC) frame. J Appl Clin Med Phys. 2010;12(2):3260.

    PubMed  Google Scholar 

  18. Li G, Ballangrud A, Kuo LC, et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011;38(7):3981–94.

    Article  PubMed  Google Scholar 

  19. Tachibana H, Uchida Y, Shiizuka H. Technical note: determination of the optimized image processing and template matching techniques for a patient intrafraction motion monitoring system. Med Phys. 2012;39(2):755–64.

    Article  PubMed  Google Scholar 

  20. Shirato H, Suzuki K, Nishioka T, et al. Precise positioning of intracranial small tumors to the linear accelerator’s isocenter, using a stereotactic radiotherapy computed tomography system (SRT-CT). Radiother Oncol. 1994;32(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  21. Willner J, Flentje M, Bratengeier K. CT simulation in stereotactic brain radiotherapy–analysis of isocenter reproducibility with mask fixation. Radiother Oncol. 1997;45(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis BC, Snyder WJ, Kim S, Kim T. Monitoring frequency of intra-fraction patient motion using the ExacTrac system for LINAC-based SRS treatments. J Appl Clin Med Phys. 2018;19(3):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li G, Ballangrud A, Chan M, et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015;16(4):5416.

    Google Scholar 

  24. Li G, Lovelock DM, Mechalakos J, et al. Migration from full-head mask to “open-face” mask for immobilization of patients with head and neck cancer. J Appl Clin Med Phys. 2013;14(5):243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ballangrud A, Kuo LC, Happersett L, et al. Institutional experience with SRS VMAT planning for multiple cranial metastases. J Appl Clin Med Phys. 2018;19(2):176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paxton AB, Manger RP, Pawlicki T, Kim GY. Evaluation of a surface imaging system’s isocenter calibration methods. J Appl Clin Med Phys. 2017;18(2):85–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bert C, Metheany KG, Doppke K, Chen GT. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys. 2005;32(9):2753–62.

    Article  PubMed  Google Scholar 

  28. Djajaputra D, Li S. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer. Med Phys. 2005;32(1):65–75.

    Article  PubMed  Google Scholar 

  29. Bert C, Metheany KG, Doppke KP, Taghian AG, Powell SN, Chen GT. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265–74.

    Article  PubMed  Google Scholar 

  30. Hoisak JDP, Pawlicki T. The role of optical surface imaging systems in radiation therapy. Semin Radiat Oncol. 2018;28(3):185–93.

    Article  PubMed  Google Scholar 

  31. Covington EL, Fiveash JB, Wu X, et al. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. J Appl Clin Med Phys. 2019;20(6):91–8.

    PubMed  PubMed Central  Google Scholar 

  32. Yin F, Wong J, Balter J, et al. The role of in-room kV x-ray imaging for patient setup and target localization. AAPM Task Group Report No. 104. 2009. https://www.aapm.org/pubs/reports/detail.asp?docid=104.

  33. Klein EE, Hanley J, Bayouth J, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    PubMed  Google Scholar 

  34. Cervino LI, Pawlicki T, Lawson JD, Jiang SB. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010;55(7):1863–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Yamada, Y., Ballangrud, Å. (2020). Image Guidance for Frameless Radiosurgery Including Surface Mapping. In: Yamada, Y., Chang, E., Fiveash, J., Knisely, J. (eds) Radiotherapy in Managing Brain Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-43740-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43740-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43739-8

  • Online ISBN: 978-3-030-43740-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics