Skip to main content

Free Energy Diminishing Discretization of Darcy-Forchheimer Flow in Poroelastic Media

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Abstract

In this paper, we develop a discretization for the non-linear coupled model of classical Darcy-Forchheimer flow in deformable porous media, an extension of the quasi-static Biot equations. The continuous model exhibits a generalized gradient flow structure, identifying the dissipative character of the physical system. The considered mixed finite element discretization is compatible with this structure, which gives access to a simple proof for the existence, uniqueness, and stability of discrete approximations. Moreover, still within the framework, the discretization allows for the development of finite volume type discretizations by lumping or numerical quadrature, reducing the computational cost of the numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambartsumyan, I., Khattatov, E., Nordbotten, J.M., Yotov, I.: A multipoint stress mixed finite element method for elasticity on simplicial grids. arXiv:1805.09920, accepted for SINUM

  2. Atik, Y., Kabir, H., Vallet, G.: On a nonlinear system of BiotForchheimer type. Complex Var. Elliptic 1–23 (2019). https://doi.org/10.1080/17476933.2019.1695786

  3. Baranger, J., Maitre, J.F., Oudin, F.: Connection between finite volume and mixed finite element methods. ESAIM-Math. Model Num. 30(4), 445–465 (1996)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer (2013)

    Google Scholar 

  5. Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., Radu, F.A.: Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)

    Article  MathSciNet  Google Scholar 

  6. Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: The gradient flow structures of thermo-poro-visco-elastic processes in porous media. arXiv e-prints arXiv:1907.03134 (2019)

  7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, vol. 28. SIAM (1999)

    Google Scholar 

  8. Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch, Ing. 45, 1782–1788 (1901)

    Google Scholar 

  9. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110(2), 161–198 (2008)

    Article  MathSciNet  Google Scholar 

  10. Hu, X., Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)

    Article  MathSciNet  Google Scholar 

  11. Klausen, R.A., Radu, F.A., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fl. 58(12), 1327–1351 (2008). https://doi.org/10.1002/fld.1787

    Article  MathSciNet  MATH  Google Scholar 

  12. Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numer. Meth. Part D E 22(6), 1438–1454 (2006)

    Article  MathSciNet  Google Scholar 

  13. Markert, B.: A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 70(3), 427 (2007)

    Article  Google Scholar 

  14. Park, E.J.: Mixed finite element methods for generalized Forchheimer flow in porous media. Numer. Meth. Part D E 21(2), 213–228 (2005). https://doi.org/10.1002/num.20035

    Article  MathSciNet  MATH  Google Scholar 

  15. Peletier, M.A.: Variational Modelling: Energies, Gradient Flows, and Large Deviations. arXiv preprint arXiv:1402.1990 (2014)

  16. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012). https://doi.org/10.1137/110858239

    Article  MathSciNet  MATH  Google Scholar 

  17. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Research Council of Norway Project 250223, as well as the FracFlow project funded by Equinor through Akademiaavtalen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub W. Both .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Both, J.W., Nordbotten, J.M., Radu, F.A. (2020). Free Energy Diminishing Discretization of Darcy-Forchheimer Flow in Poroelastic Media. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_17

Download citation

Publish with us

Policies and ethics