Skip to main content

Pathology of Brain Metastases

  • Chapter
  • First Online:
Central Nervous System Metastases
  • 676 Accesses

Abstract

In this chapter, we consider the diagnostic approach to brain metastases in a routine clinical setting. Here we review standard assessment of tissue from intraoperative frozen section analysis to conventional histological and immunohistochemical assays. Clinicopathological differential diagnoses particular to the central nervous system (CNS) axis are discussed as well as commonly used panels of antibodies. Finally, we consider the molecular testing that is currently employed at our own institution, and remark on how the trajectory of molecular pathology is likely to impact the evaluation of brain metastases in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Osborn AG, Salzman KL, Jhaveri MD, Barkovich J. Diagnostic imaging: brain. 3rd ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  2. Stark AM, Stohring C, Hedderich J, Held-Feindt J, Mehdorn HM. Surgical treatment for brain metastases: prognostic factors and survival in 309 patients with regard to patient age. J Clin Neurosci. 2011;18:34–8. https://doi.org/10.1016/j.jocn.2010.03.046.

    Article  CAS  PubMed  Google Scholar 

  3. Hwang TL, Close TP, Grego JM, Brannon WL, Gonzales F. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer. 1996;77:1551–5. https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8<1551::AID-CNCR19>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  4. Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int. 2013;4:S209–19. https://doi.org/10.4103/2152-7806.111298.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shapira Y, Hadelsberg UP, Kanner AA, Ram Z, Roth J. The ventricular system and choroid plexus as a primary site for renal cell carcinoma metastasis. Acta Neurochir. 2014;156:1469–74. https://doi.org/10.1007/s00701-014-2108-7.

    Article  PubMed  Google Scholar 

  6. Mampre D, et al. Propensity for different vascular distributions and cerebral edema of intraparenchymal brain metastases from different primary cancers. J Neurooncol. 2019;143:115–22. https://doi.org/10.1007/s11060-019-03142-x.

    Article  CAS  PubMed  Google Scholar 

  7. Cagney DN, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol. 2017;19:1511–21. https://doi.org/10.1093/neuonc/nox077.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klotz S, et al. Clinical neuropathology image 6-2018: metastasis of breast carcinoma to meningioma. Clin Neuropathol. 2018;37:252–3. https://doi.org/10.5414/NP301150.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Takei H, Powell SZ. Tumor-to-tumor metastasis to the central nervous system. Neuropathology. 2009;29:303–8. https://doi.org/10.1111/j.1440-1789.2008.00952.x.

    Article  PubMed  Google Scholar 

  10. Hamlat A, et al. Malignant transformation of intra-cranial epithelial cysts: systematic article review. J Neurooncol. 2005;74:187–94. https://doi.org/10.1007/s11060-004-5175-4.

    Article  PubMed  Google Scholar 

  11. Freilich RJ, Thompson SJ, Walker RW, Rosenblum MK. Adenocarcinomatous transformation of intracranial germ cell tumors. Am J Surg Pathol. 1995;19:537–44.

    Article  CAS  PubMed  Google Scholar 

  12. Weir HK, Johnson CJ, Thompson TD. The effect of multiple primary rules on population-based cancer survival. Cancer Causes Control. 2013;24:1231–42. https://doi.org/10.1007/s10552-013-0203-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gurel B, et al. NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol. 2010;34:1097–105. https://doi.org/10.1097/PAS.0b013e3181e6cbf3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Srodon M, Westra WH. Immunohistochemical staining for thyroid transcription factor-1: a helpful aid in discerning primary site of tumor origin in patients with brain metastases. Hum Pathol. 2002;33:642–5.

    Article  CAS  PubMed  Google Scholar 

  15. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27:303–10.

    Article  PubMed  Google Scholar 

  16. Ordonez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19:140–51. https://doi.org/10.1097/PAP.0b013e318253465d.

    Article  CAS  PubMed  Google Scholar 

  17. Ho IC, et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 1991;10:1187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoch RV, Thompson DA, Baker RJ, Weigel RJ. GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 1999;84:122–8.

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Shi J, Prichard JW, Gong Y, Lin F. Immunohistochemical evaluation of GATA-3 expression in ER-negative breast carcinomas. Am J Clin Pathol. 2014;141:648–55. https://doi.org/10.1309/AJCP0Q9UQTEESLHN.

    Article  PubMed  Google Scholar 

  20. Sangoi AR, Shrestha B, Yang G, Mego O, Beck AH. The novel marker GATA3 is significantly more sensitive than traditional markers mammaglobin and GCDFP15 for identifying breast cancer in surgical and cytology specimens of metastatic and matched primary tumors. Appl Immunohistochem Mol Morphol. 2016;24:229–37. https://doi.org/10.1097/PAI.0000000000000186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miettinen M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38:13–22. https://doi.org/10.1097/PAS.0b013e3182a0218f.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mete O, Kefeli M, Caliskan S, Asa SL. GATA3 immunoreactivity expands the transcription factor profile of pituitary neuroendocrine tumors. Mod Pathol. 2019;32:484–9. https://doi.org/10.1038/s41379-018-0167-7.

    Article  CAS  PubMed  Google Scholar 

  23. Ordonez NG. Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014;45:191–205. https://doi.org/10.1016/j.humpath.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  24. Tatsumori T, et al. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2. Appl Immunohistochem Mol Morphol. 2014;22:377–82. https://doi.org/10.1097/PAI.0b013e3182980544.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen T, et al. Comparison of 5 immunohistochemical markers of hepatocellular differentiation for the diagnosis of hepatocellular carcinoma. Arch Pathol Lab Med. 2015;139:1028–34. https://doi.org/10.5858/arpa.2014-0479-OA.

    Article  CAS  PubMed  Google Scholar 

  26. Fanburg-Smith JC, Majidi M, Miettinen M. Keratin expression in schwannoma; a study of 115 retroperitoneal and 22 peripheral schwannomas. Mod Pathol. 2006;19:115–21. https://doi.org/10.1038/modpathol.3800489.

    Article  CAS  PubMed  Google Scholar 

  27. Pratt D, et al. Re-evaluating TTF-1 immunohistochemistry in diffuse gliomas: expression is clone-dependent and associated with tumor location. Clin Neuropathol. 2017;36:263–71. https://doi.org/10.5414/NP301047.

    Article  PubMed  Google Scholar 

  28. Shibuya M. Welcoming the new WHO classification of pituitary tumors 2017: revolution in TTF-1-positive posterior pituitary tumors. Brain Tumor Pathol. 2018;35:62–70. https://doi.org/10.1007/s10014-018-0311-6.

    Article  CAS  PubMed  Google Scholar 

  29. Bielle F, et al. Chordoid gliomas of the third ventricle share TTF-1 expression with organum vasculosum of the lamina terminalis. Am J Surg Pathol. 2015;39:948–56. https://doi.org/10.1097/PAS.0000000000000421.

    Article  PubMed  Google Scholar 

  30. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  31. Lambein K, Van Bockstal M, Denys H, Libbrecht L. 2013 update of the American Society of Clinical Oncology/College of American Pathologists guideline for human epidermal growth factor receptor 2 testing: impact on immunohistochemistry-negative breast cancers. J Clin Oncol. 2014;32:1856–7. https://doi.org/10.1200/JCO.2013.54.2530.

    Article  PubMed  Google Scholar 

  32. Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract. 2010;6:195–7. https://doi.org/10.1200/JOP.777003.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aggarwal R, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36:2492–503. https://doi.org/10.1200/JCO.2017.77.6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sepulveda AR, et al. Molecular biomarkers for the evaluation of colorectal cancer. Am J Clin Pathol. 2017. https://doi.org/10.1093/ajcp/aqw209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burgess EF, et al. Discordance of high PD-L1 expression in primary and metastatic urothelial carcinoma lesions. Urol Oncol. 2019;37:299.e219–25. https://doi.org/10.1016/j.urolonc.2019.01.002.

    Article  CAS  Google Scholar 

  36. van de Nes J, et al. Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. J Neurooncol. 2016;127:435–44. https://doi.org/10.1007/s11060-015-2052-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, et al. Consistent copy number changes and recurrent PRKAR1A mutations distinguish Melanotic Schwannomas from Melanomas: SNP-array and next generation sequencing analysis. Genes Chromosomes Cancer. 2015;54:463–71. https://doi.org/10.1002/gcc.22254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brastianos PK, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5:1164–77. https://doi.org/10.1158/2159-8290.CD-15-0369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Capper D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74. https://doi.org/10.1038/nature26000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moran S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 2016;17:1386–95. https://doi.org/10.1016/S1470-2045(16)30297-2.

    Article  PubMed  Google Scholar 

  41. Orozco JIJ, et al. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun. 2018;9:4627. https://doi.org/10.1038/s41467-018-06715-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moss J, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9:5068. https://doi.org/10.1038/s41467-018-07466-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slieker RC, et al. DNA methylation landscapes of human fetal development. PLoS Genet. 2015;11:e1005583. https://doi.org/10.1371/journal.pgen.1005583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goodman AM, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608. https://doi.org/10.1158/1535-7163.MCT-17-0386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leibold AT, Monaco GN, Dey M. The role of the immune system in brain metastasis. Curr Neurobiol. 2019;10:33–48.

    PubMed  PubMed Central  Google Scholar 

  46. Mansfield AS, et al. Contraction of T cell richness in lung cancer brain metastases. Sci Rep. 2018;8:2171. https://doi.org/10.1038/s41598-018-20622-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sundstrom T, et al. Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun. 2019;7:55. https://doi.org/10.1186/s40478-019-0712-8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fischer GM, et al. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 2019;9:628–45. https://doi.org/10.1158/2159-8290.CD-18-1489.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  50. Gonçalo Rodrigues, Ayuko Hoshino, Candia M. Kenific, Irina R. Matei, Loïc Steiner, Daniela Freitas, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology. 2019;21(11):1403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Pisapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pisapia, D.J. (2020). Pathology of Brain Metastases. In: Ramakrishna, R., Magge, R., Baaj, A., Knisely, J. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-42958-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42958-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42957-7

  • Online ISBN: 978-3-030-42958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics