Skip to main content

Fungi as Parasites: A Conspectus of the Fossil Record

  • Chapter
  • First Online:
The Evolution and Fossil Record of Parasitism

Part of the book series: Topics in Geobiology ((TGBI,volume 49))

Abstract

Fungal parasites are important drivers in ecosystem dynamics today that can have far-reaching effects on the performance and community structure of other organisms. Knowledge of the fossil record and evolution of fungal parasitism is therefore a key component of our understanding of the complexity and functioning of ancient ecosystems. However, the fossil record of fungi as parasites remains exceedingly incomplete for several reasons. This chapter provides selected fossil examples of (putative) fungal parasites in association with land plants, algae, other fungi, and animals, and elucidates the inherent problems that often render interpretation of even the most exquisite fungal fossils difficult. Of all the potential levels of fungal interaction, parasitism is perhaps the most difficult to demonstrate in the fossil record. Different lines of evidence obtained from both the host and fungus are required to safely discriminate parasitic fungi from saprotrophs and even mutualists when examined in fossils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal N, Krings M, Jha N, Taylor TN (2015) Unusual spheroidal inclusions in Late Permian gymnosperm pollen grains from southern India revisited: evidence of a fungal nature. Grana 54:174–183

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, Amsterdam

    Google Scholar 

  • Ainsworth GC, Sparrow FK, Sussman AS (eds) (1973) The fungi, an advanced treatise, vol IV A: A taxonomic review with keys: Ascomycetes and Fungi Imperfecti. Academic, New York, NY

    Google Scholar 

  • Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163

    Article  Google Scholar 

  • Aist JR (1977) Mechanically induced wall appositions of plant cells can prevent penetration by a parasitic fungus. Science 197:568–570

    Article  CAS  Google Scholar 

  • Aist JR (1983) Structural responses as resistance mechanisms. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic, Sydney

    Google Scholar 

  • Akai S (1959) Histology of defense in plants. In: Horsfall JG, Dimond AE (eds) Plant pathology, an advanced treatise, vol. I: the diseased plant. Academic, New York, NY

    Google Scholar 

  • Allison PA, Briggs DEG (1993) Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21:527–530

    Article  Google Scholar 

  • Altermann W, Schopf JW (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res 75:65–90

    Article  CAS  Google Scholar 

  • Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funct Plant Biol 37:499–512

    Article  Google Scholar 

  • Anderson LI, Trewin NH (2003) An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland. Palaeontology 46:467–509

    Article  Google Scholar 

  • Anderson SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ, Hughes DP (2009) The life of a dead ant: the expression of an adaptive extended phenotype. Am Nat 174:424–433

    Article  Google Scholar 

  • Aptroot A (1995) A monograph of Didymosphaeria. Stud Mycol 37:1–160

    Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  Google Scholar 

  • Ballard RG, Walsh MA, Cole WE (1982) Blue-stain fungi in xylem of lodgepole pine: a light-microscope study on extent of hyphal distribution. Can J Bot 60:2335–2341

    Article  Google Scholar 

  • Bannister JM, Conran JG, Lee DE (2016) Life on the phylloplane: eocene epiphyllous fungi from Pikopiko Fossil Forest, Southland, New Zealand. New Zealand J Bot 54:412–432

    Article  Google Scholar 

  • Barnett HL (1963) The nature of mycoparasitism by fungi. Ann Rev Microbiol 17:1–14

    Article  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  CAS  Google Scholar 

  • Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodiversity 4:3–9

    Article  Google Scholar 

  • Barthel M, Krings M, Rössler R (2010) Die schwarzen Psaronien von Manebach, ihre Epiphyten, Parasiten und Pilze. Semana 25:41–60

    Google Scholar 

  • Bass D, Czech L, Williams BAP, Berney C, Dunthorn M, Mahé F, Torruella G, Steniford GD, Williams TA (2018) Clarifying the relationships between Microsporidia and Cryptomycota. J Eukaryot Microbiol 65:1–10

    Article  Google Scholar 

  • Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C, Marone F, Stampanoni M, Bekker A (2017) Fungus-like mycelial fossils in 2.4 billion-year-old vesicular basalt. Nature Ecol Evol 1:0141

    Article  Google Scholar 

  • Berbee ML, James TY, Strullu-Derrien C (2017) Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol 71:41–60

    Article  CAS  Google Scholar 

  • Blair JE (2009) Fungi. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford

    Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398

    Article  CAS  Google Scholar 

  • Blanchette RA, Biggs AR (eds) (1992) Defense mechanisms of woody plants against fungi. Springer-Verlag, Berlin

    Google Scholar 

  • Bonneville S, Delpomdor F, Préat A, Chevalier C, Araki T, Kazemian M, Steele A, Schreiber A, Wirth R, Benning LG (2020) Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci Adv 6(4):eaax7599

    Article  CAS  Google Scholar 

  • Boucot AJ, Poinar GO (2010) Fossil behavior compendium. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Bove FJ (1970) The story of ergot. S. Karger, New York, NY

    Google Scholar 

  • Bradley WH (1931) Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah. US Geol Surv Prof Paper 168:58

    Google Scholar 

  • Braun U (1987) A monograph on the Erysiphales (Powdery Mildews). J. Cramer, Berlin

    Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  Google Scholar 

  • Brundrett MC, Walker C, Harper CJ, Krings M (2018) Fossils of arbuscular mycorrhizal fungi give insights into the history of a successful partnership with plants. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW (eds) Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor. Elsevier, Cambridge, MA

    Google Scholar 

  • Butterfield NJ (2015) Early evolution of the Eukaryota. Palaeontology 58:5–17

    Article  Google Scholar 

  • Callow JA, Ling IT (1978) Histology of neoplasms and chlorotic lesions in maize seedlings following the injection of sporidia of Ustilago maydis (DC) Corda. Physiol Plant Pathol 3:489–490

    Article  Google Scholar 

  • Cannon PF, Hawksworth DL (1995) The diversity of fungi associated with vascular plants: the known, the unknown and the need to bridge the knowledge gap. In: Andrews JH, Tommerup IC (eds) Advances in plant pathology, vol. 11. Academic, London

    Google Scholar 

  • Casadevall A (2005) Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection? Fung Gen Biol 42:98–106

    Article  Google Scholar 

  • Chatton E (1920) Un complexe xéno-parasitaire morphologique et physiologique Neresheimeria paradoxa chez Fritillaria pellucida. CR Acad Sci Paris 171:55–57

    Google Scholar 

  • Chin K (2007) The paleobiological implications of herbivorous dinosaur coprolites form the Upper Cretaceous Two Medicine Formation of Montana: Why eat wood? Palaios 22:554–566

    Article  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  Google Scholar 

  • Chitaley SD, Yawale NR (1976) Fungal remains from the Deccan Intertrappean beds of Mohgaonkalan, India. Proc Indian Sci Cong, Part 3, Sect VI Botany 63:52

    Google Scholar 

  • Chitaley SD, Yawale NR (1978) Fungal remains from the Deccan Intertrappean beds of Mohgaonkalan, India. Botanique 7:189–194

    Google Scholar 

  • Coates AG, Jackson JBC (1987) Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13:363–378

    Article  Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) The ICS International Chronostratigraphic chart (2013; updated). Episodes 36:199–204

    Article  Google Scholar 

  • Collins B, Parke J (2008) Spatial and temporal aspects of tylosis formation in tanoak inoculated with Phytophora ramorum. In: Frankel SJ, Kliejunas JT, Palmieri KM (eds) Proceedings of the sudden oak death third science symposium, US Department of Agriculture General Technology Report PSW-GTR-214

    Google Scholar 

  • Coniglio M, James NP (1985) Calcified algae as sediment contributors to Early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, Western Newfoundland. J Sed Petrol 55:746–754

    Google Scholar 

  • Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ (2003) Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc Roy Soc Biol Sci B 270:2233–2240

    Article  Google Scholar 

  • Currah RS, Stockey RA (1991) A fossil smut fungus from the anther of an Eocene angiosperm. Nature 350:698–699

    Article  Google Scholar 

  • Currah RS, Stockey RA, LePage BA (1998) An Eocene tar spot on a fossil palm and its fungal hyperparasite. Mycologia 90:667–673

    Article  Google Scholar 

  • Daugherty LH (1941) The Upper Triassic flora of Arizona. Carnegie Institute of Washington Publishers, Washington, DC

    Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  Google Scholar 

  • De Baets K, Littlewood DTJ (2015) The importance of fossils in understanding the evolution of parasites and their vectors. Adv Parasitol 90:1–51

    Article  Google Scholar 

  • De Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP (2015) Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16:620

    Article  CAS  Google Scholar 

  • De Bekker C, Quevillon LE, Smith PB, Fleming KR, Ghosh D, Patterson AD, Hughes DP (2014) Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol Biol 14:166

    Article  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens––are fungal lifestyles evolutionarily stable traits? Fung Div 60:125–135

    Article  Google Scholar 

  • De Micco V, Balzano A, Wheeler EA, Baas P (2016) Tyloses and gums: a review of structure, function, and occurrence of vessel occlusions. IAWA J 37:186–205

    Article  Google Scholar 

  • Deverall BJ (1969) Fungal parasitism (Institute of Biology’s Studies in Biology no. 17). Edward Arnold, London

    Google Scholar 

  • Dilcher DL (1965) Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica B116:1–54

    Google Scholar 

  • Dighton J, White JF (eds) (2017) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Do Amaral MM, Ceccantini G (2011) The endoparasite Pilostyles ulei (Apodanthaceae–Cucurbitales) influences wood structure in three host species of Mimosa. IAWA J 32:1–13

    Article  Google Scholar 

  • Dollhofer V, Podmirseg S, Callaghan T, Griffith GW, Fliegerová K (2015) Anaerobic fungi and their potential for biogas production. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer International Publishing, Cham

    Google Scholar 

  • Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109:956–960

    Article  Google Scholar 

  • Dunlop JA, Garwood RJ (2017) Terrestrial invertebrates in the Rhynie chert ecosystem. Proc Trans Roy Soc B 373:20160493

    Google Scholar 

  • Ellis JP (1977) The genera Trichothyrina and Actinopeltis in Britain. Trans Brit Mycol Soc 68:145–155

    Article  Google Scholar 

  • Elsik WC (1978) Classification and geologic history of the microthyriaceous fungi. In: Bharadwaj DC, Lele KM, Kar RK (eds) 4th international palynological conference, Lucknow, proceedings, vol 1. Birbal Sahni Institute of Palaeobotany, Lucknow

    Google Scholar 

  • Feng Z, Wang J, Rößler R, Kerp H, Wei HB (2013) Complete tylosis formation in a latest Permian conifer stem. Ann Bot 111:1075–1081

    Article  CAS  Google Scholar 

  • Fleischmann A, Krings M, Mayr H, Agerer R (2007) Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae). Rev Palaeobot Palynol 145:159–172

    Article  Google Scholar 

  • Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-Jimenez K, Schmeller DS, Van de Waal DB, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R (2017) Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 19:3802–3822

    Article  Google Scholar 

  • Gachon CM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640

    Article  CAS  Google Scholar 

  • Garcia LS (2002) Laboratory identification of the Microsporidia. J Clinical Microbiol 40:1892–1901

    Article  Google Scholar 

  • García Massini JL, Channing A, Guido DM, Zamuner AB (2012) First report of fungi and fungus-like organisms from Mesozoic hot springs. Palaios 27:55–62

    Article  Google Scholar 

  • Garrett SD (1970) Pathogenic root infecting fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Garwood RJ, Oliver H, Spencer ART (2020) An introduction to the Rhynie chert. Geol Mag 157:47–64

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and nectrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Gleason FH, Küpper FC, Amon JP, Picard K, Gachon CMM, Marano AV, Sime-Ngando T, Lilje O (2011) Zoosporic true fungi in marine ecosystems: a review. Marine Freshwater Res 62:383–393

    Article  CAS  Google Scholar 

  • Gnaedinger S, García Massini JL, Bechis F, Zavattieri AM (2015) Coniferous woods and wood-decaying fungi from the el Freno Formation (Lower Jurassic), Neuquen Basin, Mendoza Province, Argentina. Ameghiniana 52:447–467

    Article  Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  Google Scholar 

  • Gomes AL, Fernandes GW (1994) Influence of parasitism by Pilostyles ingae (Rafflesiaceae) on its host plant, Mimosa naguirei (Leguminosae). Ann Bot 74:205–208

    Article  Google Scholar 

  • Gong Y-M, Xu R, Hu B (2008) Endolithic fungi: a possible killer for the mass extinction of Cretaceous dinosaurs. Sci China Ser D: Earth Sci 51:801–807

    Article  Google Scholar 

  • Góralska K, Błaszkowska J (2015) Parasites and fungi as risk factors for human and animal health. Ann Parasitol 61:207–220

    Google Scholar 

  • Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA (2014) Evidence for mesothermy in dinosaurs. Science 344:1268–1272

    Article  CAS  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River NJ

    Google Scholar 

  • Hall RA, Noverr MC (2017) Fungal interaction with the fungal animal parasites man host: exploring the spectrum of symbiosis. Curr Op Microbiol 40:58–64

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    CAS  Google Scholar 

  • Han B, Weiss LM (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol Spectr 5(2). https://doi.org/10.1128/microbiolspec.FUNK-0018-2016

  • Harper CJ, Bomfleur B, Decombeix A-L, Taylor EL, Taylor TN, Krings M (2012) Tylosis formation and fungal interactions in an Early Jurassic conifer from northern Victoria Land, Antarctica. Rev Palaeobot Palynol 175:25–31

    Article  Google Scholar 

  • Harper CJ, Taylor TN, Krings M, Taylor EL (2015) Fungi associated with Glossopteris (Glossopteridales) leaves from the Permian of Antarctica: a preliminary report. Zitteliana A 55:107–114

    Google Scholar 

  • Harper CJ, Taylor TN, Krings M, Taylor EL (2016) Structurally preserved fungi from Antarctica: diversity and interactions in late Palaeozoic and Mesozoic polar forest ecosystems. Antarct Sci 28:153–173

    Article  Google Scholar 

  • Harper CJ, Decombeix A-L, Taylor EL, Taylor TN, Krings M (2017a) Fungal decay in Permian glossopteridalean stem and root wood from Antarctica. IAWA J 38:29–48

    Article  Google Scholar 

  • Harper CJ, Krings M, Dotzler N, Taylor EL, Taylor TN (2017b) Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: morphology and development of vesicle-colonizing microfungi. Geobios 50:9–22

    Article  Google Scholar 

  • Harper CJ, Galtier J, Taylor TN, Taylor EL, Rößler R, Krings M (2019) Distribution of fungal endophytes in a Triassic fern stem. Earth Environ Sci Trans Roy Soc Edinburgh 108:387–398

    Google Scholar 

  • Harvey R, Lyon AG, Lewis PN (1969) A fossil fungus from Rhynie chert. Trans Br Mycol Soc 53:155–156

    Article  Google Scholar 

  • Hass H, Taylor TN, Remy W (1994) Fungi from the Lower Devonian Rhynie chert: mycoparasitism. Amer J Bot 81:29–37

    Article  Google Scholar 

  • Hatakka A (2005) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers online. Weinheim, Wiley-VCH Verlag, pp 129–145. https://doi.org/10.1002/3527600035.bpol1005

    Chapter  Google Scholar 

  • Hessburg PF, Hansen EM (1987) Pathological anatomy of black stain root disease of Douglas-fir. Can J Bot 65:962–971

    Article  Google Scholar 

  • Hesse R (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci Rev 26:253–284

    Article  Google Scholar 

  • Hoch HC, Staples RC (1991) Signaling for infection structure formation in fungi. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Springer, Boston, MA

    Google Scholar 

  • Hochuli PA (2016) Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Glob Plan Change 144:48–50

    Article  Google Scholar 

  • von Höhnel F (1924) Studien über Hyphomyzeten. Zbl Bakteriol Parasitol A 2(60):1–26

    Google Scholar 

  • Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA, Zhao RL, Hyde KD (2016) The evolution of fungal epiphytes. Mycosphere 7:1690–1712

    Article  Google Scholar 

  • Hübers M, Bomfleur B, Krings M, Kerp H (2011) An Early Carboniferous leaf-colonizing fungus. N Jb Geol Paläontol, Abh 261:77–82

    Article  Google Scholar 

  • Huchzermeyer FW (2003) Crocodiles: biology, husbandry and diseases. CABI Publishing, Wallingford, Oxfordshire

    Book  Google Scholar 

  • Hughes DP (2014) On the origins of parasite-extended phenotypes. Int Comp Biol 54:210–217

    Article  Google Scholar 

  • Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011a) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11:13

    Article  Google Scholar 

  • Hughes DP, Wappler T, Labandeira CC (2011b) Ancient death-grip leaf scars reveal ant-fungal parasitism. Biol Lett 7:67–70

    Article  Google Scholar 

  • Ibelings BW, de Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E (2004) Host parasite interactions between freshwater phytoplankton and the chytrid fungi (Chytridiomycota). J Phycol 40:437–453

    Article  Google Scholar 

  • Illman WI (1984) Zoosporic fungal bodies in the spores of the Devonian fossil vascular plant, Horneophyton. Mycologia 76:545–547

    Article  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hoftetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73(Suppl 1):S1284–S1290

    Article  Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CABI, Wallingford

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011a) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  Google Scholar 

  • Jones MDM, Richards TA, Hawksworth DL, Bass D (2011b) Validation and justification of the new phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–175

    Article  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kagami M, Miki T, Takimoto G (2014) Mycoloop: chytrids in aquatic food webs. Frontiers in Microbiology, 5, 166

    Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. Amer Assoc Strat Palynol Found, Dallas, TX

    Google Scholar 

  • Kapgate VD (2016) Fossil fungi from Deccan Intertrappean cherts of Madhya Pradesh, India. Int J Life Sci Spec Issue A6:117–120

    Google Scholar 

  • Karling JS (1928) Studies in the Chytridiales III. A parasitic chytrid causing cell hypertrophy in Chara. Amer J Bot 15:485–496

    Article  Google Scholar 

  • Karling JS (1932) Studies in the Chytridiales VII. The organization of the chytrid thallus. Amer J Bot 19:41–74

    Article  Google Scholar 

  • Kar RK, Sharma N, Kar R (2004) Occurrence of fossil fungi in dinosaur dung and its implication on food habit. Cur Sci 87:1053–1056

    Google Scholar 

  • Karpov SA, Mamkaeva MA, Benzerara K, Moreira D, López-Gracía P (2014) Molecular phylogeny and ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist 165:512–526

    Article  Google Scholar 

  • Karpov SA, Torruella G, Moreira D, Mamkaeva MA, López-Gracía P (2017) Molecular phylogeny of Paraphelidium letcheri sp. nov. (Aphelida, Opisthosporidia). J Eukaryot Microbiol 64:573–578

    Article  CAS  Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116

    Article  CAS  Google Scholar 

  • Kerp H (1990) The study of fossil gymnosperms by means of cuticular analysis. Palaios 5:548–569

    Article  Google Scholar 

  • Kerp H, Krings M (1999) Light microscopy of cuticles. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Spec Publ Geol Soc, London

    Google Scholar 

  • Khan MA, Bera S, Ghosh R, Spicer RA, Spicer TEV (2015) Leaf cuticular morphology of some angiosperm taxa from the Siwalik sediments (middle Miocene to lower Pleistocene) of Arunachal Pradesh, eastern Himalaya: Systematic and paleaoclimatic implications. Rev Palaeobot Palynol 214:9–26

    Article  Google Scholar 

  • Kidston R, Lang WH (1921) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part V. The Thallophyta occurring in the peat-bed; the succession of the plants throughout a vertical section of the bed, and the conditions of accumulation and preservation of the deposit. Trans Roy Soc Edinburgh 52:855–902

    Article  Google Scholar 

  • Klymiuk AA, Taylor TN, Taylor EL, Krings M (2013) Paleomycology of the Princeton Chert. I. Fossil hyphomycetes associated with the early Eocene aquatic angiosperm, Eorhiza arnoldii. Mycologia 105:521–529

    Article  Google Scholar 

  • Knogge W (1996) Fungal infection of plants. Plant Cell 8:1711–1722

    Article  CAS  Google Scholar 

  • Knoll AH (1985) Exceptional preservation of photosynthetic organisms in silicide carbonates and silicified peats. Phil Trans Roy Soc London B 311:111–122

    Article  Google Scholar 

  • Köhler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273

    Article  CAS  Google Scholar 

  • Kohlmeyer J (1979) Marine fungal pathogens among Ascomycetes and Deuteromycetes. Experientia 35:437–439

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer L (1979) Marine mycology: the higher fungi. Academic, New York, NY

    Google Scholar 

  • Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250

    Article  CAS  Google Scholar 

  • Krings M, Harper CJ (2018) Deciphering interfungal relationships in the 410 million-year-old Rhynie chert: glomoid spores under attack. Geobios 51:151–160

    Article  Google Scholar 

  • Krings M, Harper CJ (2019) Fungal intruders of enigmatic propagule clusters occurring in microbial mats from the Lower Devonian Rhynie chert. PalZ 93:135–149

    Article  Google Scholar 

  • Krings M, Kerp H (2019) A tiny parasite of unicellular microorganisms from the Lower Devonian Rhynie and Windyfield cherts, Scotland. Rev Palaeobot Palynol 271:104106

    Article  Google Scholar 

  • Krings M, Taylor TN (2012) Fungal reproductive units enveloped in a hyphal mantle from the Lower Pennsylvanian of Great Britain, and their relevance to our understanding of Carboniferous fungal “sporocarps.”. Rev Palaeobot Palynol 175:1–9

    Article  Google Scholar 

  • Krings M, Taylor TN (2014a) An unusual fossil microfungus with suggested affinities to the Chytridiomycota from the Lower Devonian Rhynie chert. Nova Hedw 99:403–412

    Article  Google Scholar 

  • Krings M, Taylor TN (2014b) Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: an intricate interaction between two mycelial fungi. Symbiosis 64:53–61

    Article  Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2007a) A microfungal assemblage in Lepidodendron from the Upper Visean (Carboniferous) of central France. CR Palevol 6:431–436

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler HEJ (2007b) An alternative mode of early land plant colonization by putative endomycorrhizal fungi. Plant Signal Behav 2:125–126

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler HEJ (2007c) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  Google Scholar 

  • Krings M, Dotzler N, Taylor TN (2009a) Globicultrix nugax nov. gen. et nov. spec. (Chytridiomycota), an intrusive microfungus in fungal spores from the Rhynie chert. Zitteliana A 48(49):165–170

    Google Scholar 

  • Krings M, Dotzler N, Galtier J, Taylor TN (2009b) Microfungi from the upper Visean (Mississippian) of central France: Chytridiomycota and chytrid-like remains of uncertain affinity. Rev Palaeobot Palynol 156:319–328

    Article  Google Scholar 

  • Krings M, Dotzler N, Longcore JE, Taylor TN (2010a) An unusual microfungus in a fungal spore from the Lower Devonian Rhynie chert. Palaeontology 53:753–759

    Article  Google Scholar 

  • Krings M, Dotzler N, Taylor TN, Galtier J (2010b) A fungal community in plant tissue from the Lower Coal Measures (Langsettian, Lower Pennsylvanian) of Great Britain. Bull Geosci 85:679–690

    Article  Google Scholar 

  • Krings M, Dotzler N, Galtier J, Taylor TN (2011a) Oldest fossil basidiomycete clamp connections. Mycoscience 52:18–23

    Article  Google Scholar 

  • Krings M, Dotzler N, Taylor TN (2011b) Mycoparasitism in Dubiocarpon, a fungal sporocarp from the Carboniferous. N Jb Geol Paläontol Abh 262:241–245

    Article  Google Scholar 

  • Krings M, Taylor TN, Dotzler N, Galtier J (2011c) Fungal remains in cordaite (Cordaitales) leaves from the Upper Pennsylvanian of central France. Bull Geosci 86:777–784

    Google Scholar 

  • Krings M, Taylor TN, Taylor EL, Dotzler N, Walker C (2011d) Arbuscular mycorrhizal-like fungi in Carboniferous arborescent lycopsids. New Phytol 191:311–314

    Article  Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant–fungal interaction. Wiley, Ames, IA

    Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2013) Fossil evidence of the zygomyceteous fungi. Persoonia 30:1–10

    Article  CAS  Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2014) Microorganisms associated with the seed fern Lyginopteris oldhamia (Binney) H. Potonié (Lyginopteridales) from the Carboniferous of Great Britain. Palaeontographica B290:109–125

    Article  Google Scholar 

  • Krings M, Taylor TN, Kerp H, Walker C (2015) Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: Sporocarp formation in glomeromycotan spores. Geobios 48:449–458

    Article  Google Scholar 

  • Krings M, Taylor TN, Dotzler N, Harper CJ (2016) Morphology and ontogenetic development of Zwergimyces vestitus, a fungal reproductive unit enveloped in a hyphal mantle from the Lower Devonian Rhynie chert. Rev Palaeobot Palynol 228:47–56

    Article  Google Scholar 

  • Krings M, Harper CJ, Taylor EL (2017a) Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Phil Trans Roy Soc B 373:20160500

    Article  Google Scholar 

  • Krings M, Harper CJ, White JF, Barthel M, Heinrichs J, Taylor EL, Taylor TN (2017b) Fungi in a Psaronius root mantle from the Rotliegend (Asselian, Lower Permian/Cisuralian) of Thuringia, Germany. Rev Palaeobot Palynol 239:14–30

    Article  Google Scholar 

  • Krings M, Taylor TN, Harper CJ (2017c) Early Fungi. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kürschner H, Schumilovskikh L, Djamali M, de Beaulieu J-L (2015) A late Holocene subfossil record of Sphagnum squarrosum Crome (Sphagnopsida, Bryophyta) from NW Iran. Nova Hedw 100:373–381

    Article  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  Google Scholar 

  • Laschet C (1984) On the origin of cherts. Facies 10:257–289

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals, Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Leake JR (2005) Plants parasitic on fungi: Unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19:113–122

    Google Scholar 

  • LePage BA, Currah RS, Stockey RA (1994) The fossil fungi of the Princeton chert. Int J Plant Sci 155:828–836

    Article  Google Scholar 

  • Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC (2013) Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the Cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS One 8(2):e56232

    Article  CAS  Google Scholar 

  • Letcher PM, Powell MJ, Lee PA, Lopez S, Burnett M (2017) Molecular phylogeny and ultrastructure of Aphelidium desmodesmi, a new species in Aphelida (Opisthosporidia). J Eukaryot Microbiol 64:655–667

    Article  CAS  Google Scholar 

  • Lewis DH (1973) Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48:261–278

    Article  Google Scholar 

  • Limaye RB, Kumaran KPN, Nair KM, Padmalal D (2007) Non-pollen palynomorphs as potential palaeoenvironmental indicators in the Late Quaternary sediments of the west coast of India. Curr Sci 92:1370–1382

    Google Scholar 

  • Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests—towards a less ‘phytocentric’ perspective. Plant Soil 242:123–135

    Article  CAS  Google Scholar 

  • Lom J, Dyková I (2005) Microsporidian xenomas in fish seen in wider perspective. Folia Parasitol 52:69–81

    Article  Google Scholar 

  • Loron CC, François C, Rainbird RH, Turner EC, Borensztaijn S, Javaux EJ (2019) Early fungi from the Proterozoic Era in Arctic Canada. Nature 570:232–235

    Article  CAS  Google Scholar 

  • Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT (2009) Fungi evolved right on track. Mycologia 101:810–822

    Article  Google Scholar 

  • Ma F-J, Sun B-N, Wang Q-J, Dong J-L, Yang G-L, Yang Y (2015) A new species of Meliolinites associated with Buxus leaves from the Oligocene of Guangxi, southern China. Mycologia 107:505–511

    Article  Google Scholar 

  • Magnus P (1903) Ein von F.W. Oliver nachgewiesener fossiler parasitischer Pilz. Ber Deutsch Bot Ges 21:248–250

    Google Scholar 

  • Marcogliese DJ (2004) Parasites: small players with crucial roles in the ecological theater. EcoHealth 1:151–164

    Article  Google Scholar 

  • Martin JT (1964) Role of cuticle in the defense against plant disease. Annu Rev Phytopathol 2:81–100

    Article  Google Scholar 

  • Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204

    Article  CAS  Google Scholar 

  • Martín-Rodrigues N, Espinel S, Sanchez-Zabala J, Ortíz A, González-Murua C, Duñabeitia MK (2013) Spatial and temporal dynamics of the colonization of Pinus radiata by Fusarium circinatum, of conidiophore development in the pith and of traumatic resin duct formation. New Phytol 198:1215–1227

    Article  CAS  Google Scholar 

  • Marynowski L, Smolarek J, Bechtel A, Philippe M, Kurkiewicz S, Simoneit BRT (2013) Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Org Geochem 59:143–151

    Article  CAS  Google Scholar 

  • Matos E, Corral L, Azevedo C (2003) Ultrastructural details of the xenoma of Loma myrophis (phylum Microsporidia) and extrusion of the polar tube during autoinfection. Dis Aquat Org 54:203–207

    Article  CAS  Google Scholar 

  • Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens—a cytological and physiological evulation. New Phytol 124:193–213

    Article  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration of plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  CAS  Google Scholar 

  • Merckx VSFT (ed) (2013) Mycoheterotrophy. The biology of plants living on fungi. Springer Science+Business Media, New York

    Google Scholar 

  • Meyers JD (1990) Fungal infections in bone marrow transplant patients. Seminars Oncol 17:10–13

    CAS  Google Scholar 

  • Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nature Rev Microbiol 15:756–771

    Article  CAS  Google Scholar 

  • Money NP (2016) Fungi: a very short introduction. Oxford University Press, Oxford, MA

    Book  Google Scholar 

  • Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue CJ (2018) The timescale of early land plant evolution. Proc Natl Acad Sci USA 115:E2274–E2283

    Article  CAS  Google Scholar 

  • Nash TH (Ed) (2008) Lichen biology. 2nd edition. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Nicholson RL, Epstein L (1991) Adhesion of fungi to the plant surface: prerequisite for pathogenesis. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum Press, New York, NY

    Google Scholar 

  • Orpin CG, Joblin KN (1997) The rumen anaerobic fungi. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Springer, Dordrecht

    Google Scholar 

  • Parratt SR, Laine AL (2016) The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J 10:1815–1822

    Article  CAS  Google Scholar 

  • Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233

    Article  CAS  Google Scholar 

  • Pearce RB, Holloway PJ (1984) Suberin in the sapwood of oak (Quercus robur L.): its composition from a compartmentalization barrier and its occurrence in tyloses in undecayed wood. Physiol Plant Pathol 24:71–81

    Article  CAS  Google Scholar 

  • Petit G (2010) Skin nodules in fossil fishes from Monte Bolca (Eocene, Northern Italy). Geodiversitas 32:157–163

    Article  Google Scholar 

  • Petit G, Khalloufi B (2012) Paleopathology of a fossil fish from the Solnhofen Lagerstätte (Upper Jurassic, southern Germany). Int J Paleopathol 2:42–44

    Article  Google Scholar 

  • Phipps CJ (2007) Entopeltacites remberi sp. nov. from the Miocene of Clarkia, Idaho. Rev Palaeobot Palynol 145:193–200

    Article  Google Scholar 

  • Phipps CJ, Rember WC (2004) Epiphyllous fungi from the Miocene of Clarkia, Idaho: reproductive structures. Rev Palaeobot Palynol 129:67–79

    Article  Google Scholar 

  • Phipps CJ, Axsmith BJ, Taylor TN, Taylor EL (2000) Gleichenipteris antarcticus gen. et sp. nov. from the Triassic of Antarctica. Rev Palaeobot Palynol 108:75–83

    Article  Google Scholar 

  • Pirozynski KA (1976) Fossil fungi. Annu Rev Phytopathol 14:237–246

    Article  Google Scholar 

  • Poinar GO (2015) One hundred million year old ergot: psychotropic compounds in the Cretaceous? Palaeodiversity 8:13–19

    Google Scholar 

  • Poinar GO (2016a) A mid-Cretaceous Eccrinales infesting a primitive wasp in Myanmar amber. Fung Biol 120:1537–1539

    Article  Google Scholar 

  • Poinar GO (2016b) A mid-Cretaceous ectoparasitic fungus, Spheciophila adercia gen et sp. nov., attached to a wasp in Myanmar amber. Fungal Genom Biol 6:145

    Article  Google Scholar 

  • Poinar GO (2018) A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber. Hist Biol 32:234–237

    Google Scholar 

  • Poinar GO, Buckley R (2007) Evidence of mycoparasitism and hypermycoparasitism in Early Cretaceous amber. Mycol Res 111:503–506

    Article  Google Scholar 

  • Poinar GO, Thomas GM (1982) An entomophthoralean fungus from Dominican amber. Mycologia 74:332–334

    Article  Google Scholar 

  • Poinar GO, Thomas GM (1984) An entomogenous fungus from Dominican amber. Experientia 40:578–579

    Article  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  Google Scholar 

  • Prasertphon S (1963) Conidial formation in Entomophthora species with E. muscae-like conidia. Mycologia 68:1–29

    Google Scholar 

  • Rega EA, Brochu C (2001) Paleopathology of a mature Tyrannosaurus rex. J Vert Paleontol 21:(Suppl 3):92A

    Google Scholar 

  • Rehner SA, Minnis AM, Sung G-H, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073

    Article  Google Scholar 

  • Roth L, Lorscheitter ML (2016) Fungi, algae, and other palynomorphs in sedimentary profiles collected from two forests in the northernmost coastal plain from Rio Grande do Sul, southern Brazil. Brazil J Bot 39:1135–1143

    Article  Google Scholar 

  • Rothschild BM, Martin, LD (2006) Skeletal impact of disease: bulletin 33 (Vol. 33). New Mexico Museum of Natural History and Science

    Google Scholar 

  • Rossi W, Kotrba M, Triebel D (2005) A new species of Stigmatomyces from Baltic amber, the first fossil record of Laboulbeniomycetes. Mycol Res 109:271–274

    Article  Google Scholar 

  • Round FE (1981) The ecology of algae. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Ryvarden L (1991) Genera of polypores. Nomenclature and taxonomy (Synopsis fungorum 5, fungiflora). Grønlands Grafiske A/S, Oslo

    Google Scholar 

  • Schmidt AR, Dörfelt H, Perrichot V (2007) Carnivorous fungi from Cretaceous amber. Science 318:1743

    Article  CAS  Google Scholar 

  • Schulze-Lefert P (2004) Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Op Plant Biol 7:377–383

    Article  CAS  Google Scholar 

  • Schumilovskikh LS, Schlütz F, Achterberg I, Kvitkina A, Bauerochse A, Leuschner HH (2015) Pollen as nutrient source in Holocene ombrotrophic bogs. Rev Palaeobot Palynol 221:171–178

    Article  Google Scholar 

  • Schwarze FWMR, Baum S (2000) Mechanisms of reaction zone penetration by decay fungi in wood of beech (Fagus sylvatica). New Phytol 146:129–140

    Article  Google Scholar 

  • Schwarze FWMR, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux J-P (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274

    Article  Google Scholar 

  • Shang Y, Feng P, Wang C (2015) Fungi that infect insects: altering host behavior and beyond. PLoS Pathog 11:e1005037

    Article  CAS  Google Scholar 

  • Sharon A, Schlezinger N (2013) Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog 9:e1003517

    Article  CAS  Google Scholar 

  • Sharma N, Kar RK, Agarwal A, Kar R (2005) Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleontology 51:73–82

    Article  Google Scholar 

  • Sharpe SC, Eme L, Brown MW, Roger AJ (2015) Timing the origins of multicellular eukaryotes through phylogenetic and relaxed molecular clock analysis. In: Ruiz-Trillo IR, Nedelecu AM (eds) Evolutionary transitions to multicellular life. Springer, Dordrecht, NL

    Google Scholar 

  • Shrimpton DM (1973) Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Can J Bot 51:527–534

    Article  CAS  Google Scholar 

  • Sime-Ngando T (2012) Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol 3:361. https://doi.org/10.3389/fmicb.2012.00361

    Article  Google Scholar 

  • Singh H, Tripathi SKM (2010) Fungal remains from the Early Paleogene sub-surface sediments of Karakha, Barmer Distinct, western India. Geophytology 39:9–15

    Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Slater BJ, McLoughlin S, Hilton J (2015) A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res 27:1446–1473

    Article  Google Scholar 

  • Smith SY, Currah RS, Stockey RA (2004) Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96:180–186

    Article  Google Scholar 

  • Smith SY, Stockey RA (2007) Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Amer J Bot 94:1642–1657

    Article  Google Scholar 

  • Stewart JE (1993) Infectious disease of marine crustaceans. In: Couch JA, Fournie JW (eds) Pathbiology of marine and estuarine organisms. CRC Press, Boca Raton, FL

    Google Scholar 

  • Strullu-Derrien C, Wawrzyniak Z, Goral T, Kenrick P (2015) Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-myr-old Rhynie chert (Scotland, UK). Bot J Linn Soc 179:201–213

    Article  Google Scholar 

  • Strullu-Derrien C, Goral T, Longcore JE, Olesen J, Kenrick P, Edgecombe GD (2016) A new chytridiomycete fungus intermixed with crustacean resting eggs in a 407-million-year-old continental freshwater environment. PLoS One 11:e0167301

    Article  CAS  Google Scholar 

  • Stubblefield SP, Taylor TN (1983) Studies of paleozoic fungi. I. The structure and organization of Traquairia (Ascomycota). Amer J Bot 70:387–399

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN (1986) Wood decay in silicified gymnosperms from Antarctica. Bot Gaz 147:116–125

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN (1988) Recent advances in paleomycology. New Phytol 108:3–25

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN, Miller CE, Cole GT (1983) Studies in Carboniferous fungi. II. The structure and organization of Mycocarpon, Sporocarpon, Dubiocarpon, and Coleocarpon (Ascomycotina). Amer J Bot 70:1482–1498

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN, Miller CE, Cole GT (1984) Studies in Paleozoic fungi. III. Fungal parasitism in a Pennsylvanian gymnosperm. Amer J Bot 71:1275–1284

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN, Beck CB (1985) Studies of Paleozoic fungi. IV. Wood-decaying fungi in Callixylon newberryi from the Upper Devonian. Amer J Bot 72:1765–1774

    Article  Google Scholar 

  • Sun C, Taylor TN, Na Y, Li T, Krings M (2015) Unusual preservation of a microthyriaceous fungus (Ascomycota) on Sphenobaiera (ginkgophyte foliage) from the Middle Jurassic of China. Rev Palaeobot Palynol 223:21–30

    Article  Google Scholar 

  • Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  Google Scholar 

  • Sung G-H, Poinar GO, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal–arthropod symbioses. Mol Phylogen Evol 49:495–502

    Article  Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Ann Rev Plant Physiol 28:479–501

    Article  CAS  Google Scholar 

  • Szabo LJ, Bushnell WR (2001) Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc Natl Acad Sci USA 98:7654–7655

    Article  CAS  Google Scholar 

  • Takamatsu S, Niinomi S, Harada M, Havrylenko M (2010) Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts. Persoonia 24:38–48

    Article  CAS  Google Scholar 

  • Takamatsu S (2013) Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience 54:75–86

    Article  Google Scholar 

  • Tarran M, Wilson PG, Hill RS (2016) Oldest record of Metrosideros (Myrtaceae): fossil flowers, fruits, and leaves form Australia. Amer J Bot 103:754–768

    Article  CAS  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    Article  Google Scholar 

  • Taylor TN, Krings M (2010) Paleomycology: the rediscovery of the obvious. Palaios 25:283–286

    Article  Google Scholar 

  • Taylor TN, White JF (1989) Fossil fungi (Endogonaceae) from the Triassic of Antarctica. Amer J Bot 76:389–396

    Article  Google Scholar 

  • Taylor TN, Remy W, Hass H (1992a) Fungi from the Lower Devonian Rhynie chert: Chytridiomycetes. Amer J Bot 79:1233–1241

    Article  Google Scholar 

  • Taylor TN, Hass H, Remy W (1992b) Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–910

    Article  Google Scholar 

  • Taylor TN, Remy W, Hass H (1992c) Parasitism in a 400-million-year-old green alga. Nature 357:493–494

    Article  Google Scholar 

  • Taylor TN, Galtier J, Axsmith BJ (1994) Fungi from the Lower Carboniferous of central France. Rev Palaeobot Palynol 83:253–260

    Article  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhiza from the Early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  • Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399:648

    Article  CAS  Google Scholar 

  • Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinburgh, Earth Sci 94:457–473

    Article  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005a) Perithecial ascomycetes from the 400 million years old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  CAS  Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005b) Life history biology of early land plants: dedciphering the gametophyte phase. Proc Natl Acad Sci USA 102:5892–5897

    Article  CAS  Google Scholar 

  • Taylor TN, Krings M, Klavins SD, Taylor EL (2005c) Protoascon missouriensis, a complex fossil microfungus revisited. Mycologia 97:725–729

    Article  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Palaeobotany: the biology and evolution of fossil plants. Elsevier, Burlington, MA

    Google Scholar 

  • Taylor TN, Krings M, Galtier J, Dotzler N (2012) Fungal endophytes in Astromyelon-type (Sphenophyta, Equisetales, Calamitaceae) roots from the Upper Pennsylvanian of France. Rev Palaeobot Palynol 171:9–18

    Article  Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) Fossil fungi, 1st edn. Elsevier, Burlington, MA

    Google Scholar 

  • Thiéry A, Fugate M (1994) A new American fairy shrimp, Linderiella santarosae (Crustacea, Anostraca, Linderiellidae), from vernal pools of California. Proc Biol Soc Wash 107:641–656

    Google Scholar 

  • Thomas GM, Poinar GO (1988) A fossil Aspergillus from Eocene Dominican amber. J Paleontol 62:141–143

    Article  Google Scholar 

  • Tiffney BH, Barghoorn ES (1974) The fossil record of the fungi. Occas Pap Farlow Herb Cryptog Bot 7:1–42

    Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262

    Article  CAS  Google Scholar 

  • Trewin NH, Kerp H (2017) The Rhynie and Windyfield cherts, Early Devonian, Rhynie, Scotland. In: Fraser NC, Sues H-D (eds) Terrestrial conservation Lagerstätten––windows into the evolution of life on land. Dunedin Academic Press, Edinburgh

    Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  CAS  Google Scholar 

  • Vacher C, Piou D, Desprez-Loustau ML (2008) Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS One 3:e1740

    Article  CAS  Google Scholar 

  • Vávra J, Lukeš J (2013) Microsporidia and ‘the art of living together’. Adv Parasitol 82:253–319

    Article  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Van Geel B (2002) Non-pollen palynomorphs. In: Smol JP, HJB B, Last WM, Bradley RS, Alverson K (eds) Tracking environmental change using lake sediments. developments in paleoenvironmental research, vol 3. Springer, Dordrecht

    Google Scholar 

  • Van Geel B, Andersen ST (1988) Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark. Rev Palaeobot Palynol 56:89–93

    Article  Google Scholar 

  • Van Geel B, Aptroot A, Mauquoy D (2006) Sub-fossil evidence for fungal hyperparasitism (Isthmospora spinosa on Meliola ellisii, on Calluna vulgaris) in a Holocene intermediate ombrotrophic bog in northern-England. Rev Palaeobot Palynol 141:121–126

    Article  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  CAS  Google Scholar 

  • Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Darnsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol 131:1580–1590

    Article  CAS  Google Scholar 

  • Vujanovic V, St-Arnaud M, Neumann P-J (2009) Susceptibility of cones and seeds to fungal infection in a pine (Pinus spp.) collection. Forest Pathol 30:305–320

    Article  Google Scholar 

  • Walker C, Harper CJ, Brundrett MC, Krings M (2018) Looking for arbuscular mycorrhizal fungi (AMF) in the fossil record: an illustrated guide. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW (eds) Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor. Elsevier, Cambridge, MA

    Google Scholar 

  • Wan M, Yang W, He X, Liu L, Wang J (2017) First record of fossil basidiomycete clamp connections in cordaitalean stems from the Asselian-Sakmarian (lower Permian) of Shanxi Province, North China. Palaeogeogr Palaeoclimatol Palaeoecol 466:353–360

    Article  Google Scholar 

  • Wang Z-Q (1997) Permian Supaia fronds and an associated Autunia fructification from Shanxi, China. Palaeontology 40:245–277

    Google Scholar 

  • Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey WT, Munger SP (eds) Marine phytoplankton (Oceanography and Ocean Engineering). Nova Science Publishers Inc., New York

    Google Scholar 

  • Watson V, Rothschild B (2021) Deep origin of parasitic disease in vertebrates. In: De Baets K., Huntley JW (eds) The evolution and fossil record of Parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Weaver L, McLoughlin S, Drinnan AN (1997) Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica. AGSO J Aust Geol Geophys 16:655–676

    Google Scholar 

  • Weiss LM, Becnel JJ (2014) Microsporidia: pathogens of opportunity. Wiley, Oxford

    Google Scholar 

  • Weiss A, Martindale RC (2017) Crustose coralline algae increased framework and diversity on ancient coral reefs. PLoS One 12:e0181637

    Article  CAS  Google Scholar 

  • Weissenberg R (1968) Intracellular development of the microsporidian Glugea anomala Moniez in hypertrophying migratory cells of the fish Gasterosteus aculeatus L., an example of the formation of “xenoma tumors”. J Protozool 15:44–57

    Article  Google Scholar 

  • White JF, Taylor TN (1989) Triassic fungi with suggested affinities to the Endogonales (Zygomycotina). Rev Palaeobot Palynol 61:53–61

    Article  Google Scholar 

  • White JF, Kingsley K, Harper CJ, Verma SK, Brindisi L, Chen Q, Chang X, Micci A, Bergen M (2018) Reactive oxygen defense against cellular endoparasites and the origin if eukaryotes. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW (eds) Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor. Elsevier, Cambridge, MA

    Google Scholar 

  • Williamson WC (1878) On the organization of the fossil plants of the coal-measures. Part IX. Phil Trans Roy Soc London B Biol Sci 169:319–364

    Google Scholar 

  • Williamson WC (1880) On the organization of the fossil plants of the coal-measures. Part X. Including an examination of the supposed radiolarians of the Carboniferous rocks. Phil Trans Roy Soc London B Biol Sci 171:493–539

    Google Scholar 

  • Williamson WC (1883) On the organization of the fossil plants of the coal-measures: part XII. Phil Trans Roy Soc London B Biol Sci 174:459–475

    Google Scholar 

  • Wolf FA (1969) A rust and an alga in Eocene sediment from western Kentucky. J Elisha Mitchell Sci Soc 85:57–58

    Google Scholar 

  • Wolff EDS, Salisbury SW, Horner JR, Varricchio DJ (2009) Common avian infection plagued the tyrant dinosaurs. PLoS One 4:e7288

    Article  CAS  Google Scholar 

  • Zelmer DA (1998) An evolutionary definition of parasitism. Int J Parasitol 28:531–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Alexander von Humboldt-Foundation (3.1-USA/1160852 STP to C.J.H.), and the National Science Foundation (DEB-1441604 subcontract S1696A-A to M.K.). We gratefully acknowledge H. Kerp and H. Hass (both Münster, Germany), G.O. Poinar and R.A. Stockey (both Corvallis, OR, USA), and A.R. Schmidt (Göttingen, Germany) for providing images, A.-L. Decombeix (Montpellier, France) for fruitful discussions, as well as N. Dotzler, H. Martin, and S. Sónyi (all Munich, Germany) for technical assistance, and K. De Baets (Erlangen, Germany) for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla J. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harper, C.J., Krings, M. (2021). Fungi as Parasites: A Conspectus of the Fossil Record. In: De Baets, K., Huntley, J.W. (eds) The Evolution and Fossil Record of Parasitism. Topics in Geobiology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-42484-8_3

Download citation

Publish with us

Policies and ethics