Skip to main content

Dairy Lipids in Infant Formulae to Reduce the Gap with Breast Milk Fat Globules: Nutritional and Health Benefits Associated to Opportunities

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

Dietary lipids play a major role in infant nutrition, development and health. As an alternative to breast milk, infant formulae (IF) are the manufactured products given to infants. However, many differences exist between breast milk fat globules that are naturally secreted by lactating mothers and the processed lipid droplets formed under pressure during homogenization and found in IF. The lipid composition and structure of the emulsion in IF could be improved to mimick breast milk fat globules. This book chapter i) describes breast milk fat globules covered by their biological membrane (MFGM), including their functions and digestion in the gastrointestinal tract of infants, ii) presents the technological steps involved in IF preparation and the blending of oils with other ingredients leading to the final composition and structure of processed lipid droplets, iii) highlights the health benefits for infants of adding dairy lipids (Fatty acids, TAG, MFGM rich in phospholipids, sphingolipids, cholesterol and glycoproteins) in IF, iv) explains the opportunities to produce food-grade ingredients enriched in bovine MFGM and to prepare processed lipid droplets in IF bio-inspired by breast milk fat globules. The next generation of IF will integrate the advantages provided by dairy lipids to improve the quality of IF and bring nutritional and heath benefits to infants worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ailhaud, G., Massiera, F., Weill, P., Legrand, P., Alessandri, J.-M., & Guesnet, P. (2006). Temporal changes in dietary fats: Role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progress in Lipid Research, 45, 203–236.

    Article  CAS  PubMed  Google Scholar 

  • Amara, S., Patin, A., Giuffrida, F., Wooster, T. J., Thakkar, S. K., Bénarouche, A., et al. (2014). In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions. Food & Function, 5, 1409–1421.

    Article  CAS  Google Scholar 

  • American Academy of Pediatrics (AAP). (2012). Section on breastfeeding. Breastfeeding and the use of human milk. Pediatrics, 129, e827–e841.

    Article  Google Scholar 

  • Anderson, R. C., MacGibbon, A. K. H., Haggarty, N., Armstrong, K. M., & Roy, N. C. (2018). Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity. PLoS One, 13, e0190839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Argov-Argaman, N., Smilowitz, J. T., Bricarello, D. A., Barboza, M., Lerno, L., Froehlich, J. W., et al. (2010). Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. Journal of Agricultural and Food Chemistry, 58, 11234–11242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armand, M., Hamosh, M., Mehta, N. R., Angelus, P. A., Philpott, J. R., Henderson, T. R., et al. (1996). Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatric Research, 40, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Armand, M., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition, 70, 1096–1106.

    Article  CAS  PubMed  Google Scholar 

  • Baars, A., Oosting, A., Engels, E., Kegler, D., Kodde, A., Schipper, L., et al. (2016). Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. The British Journal of Nutrition, 115, 1930–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Yoseph, F., Lifshitz, Y., & Cohen, T. (2013). Review of sn-2 palmitate oil implications for infant health. Prostaglandins, Leukotrienes and Essential Fatty Acids, 89, 139–143.

    Article  CAS  Google Scholar 

  • Baumgartner, S., van de Heijning, B. J. M., Acton, D., & Mensink, R. P. (2017). Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: A proof-of-concept study. European Journal of Clinical Nutrition, 71, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Benoit, B., Fauquant, C., Daira, P., Peretti, N., Guichardant, M., & Michalski, M.-C. (2010). Phospholipid species and minor sterols in French human milks. Food Chemistry, 120, 684–691.

    Article  CAS  Google Scholar 

  • Bernard, J. Y., Armand, M., Peyre, H., Garcia, C., Forhan, A., De Agostini, M., et al. (2017). Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5-6 years. The Journal of Pediatrics, 183, 43–50.e3.

    Article  CAS  PubMed  Google Scholar 

  • Bernback, S., Blackberg, L., & Hernell, O. (1990). The complete digestion of human-milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile-salt stimulated lipase. The Journal of Clinical Investigation, 85, 1221–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhinder, G., Allaire, J. M., Garcia, C., Lau, J. T., Chan, J. M., Ryz, N. R., et al. (2017). Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Scientific Reports, 7, 45274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billeaud, C., Puccio, G., Saliba, E., Guillois, B., Vaysse, C., Pecquet, S., et al. (2014). Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: A randomized controlled multicenter non-inferiority trial in healthy term infants. Clinical Medicine Insights: Pediatrics, 8, CMPed.S16962.

    Article  Google Scholar 

  • Bourlieu, C., Cheillan, D., Blot, M., Daira, P., Trauchessec, M., Ruet, S., et al. (2018). Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chemistry, 240, 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Cilla, A., Quintaes, K. D., Barberá, R., & Alegría, A. (2016). Phospholipids in human milk and infant formulas: Benefits and needs for correct infant nutrition. Critical Reviews in Food Science and Nutrition, 56, 1880–1892.

    Article  CAS  PubMed  Google Scholar 

  • Claumarchirant, L., Cilla, A., Matencio, E., Sanchez-Siles, L. M., Castro-Gomez, P., Fontecha, J., et al. (2016). Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. International Dairy Journal, 61, 228–238.

    Article  CAS  Google Scholar 

  • Claumarchirant, L., Matencio, E., Sanchez-Siles, L. M., Alegría, A., & Lagarda, M. J. (2015). Sterol composition in infant formulas and estimated intake. Journal of Agricultural and Food Chemistry, 63, 7245–7251.

    Article  CAS  PubMed  Google Scholar 

  • Courage, M., Mccloy, U., Herzberg, G., Andrews, W., Simmons, B., Mcdonald, A., et al. (1998). Visual acuity development and fatty acid composition of erythrocytes in full-term infants fed breast milk, commercial formula, or evaporated milk. Journal of Developmental & Behavioral Pediatrics, 19, 9–17.

    Article  CAS  Google Scholar 

  • Delplanque, B., Du, Q., Martin, J.-C., & Guesnet, P. (2018). Lipids for infant formulas. OCL, 25, D305.

    Article  Google Scholar 

  • Delplanque, B., Gibson, R., Koletzko, B., Lapillonne, A., & Strandvik, B. (2015). Lipid quality in infant nutrition: Current knowledge and future opportunities. Journal of Pediatric Gastroenterology and Nutrition, 61, 8–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demmelmair, H., & Koletzko, B. (2018). Lipids in human milk. Best Practice & Research Clinical Endocrinology & Metabolism, 32, 57–68.

    Article  CAS  Google Scholar 

  • Demmelmair, H., Prell, C., Timby, N., & Lönnerdal, B. (2017). Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients, 9, 817.

    Article  PubMed Central  CAS  Google Scholar 

  • Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18, 436–457.

    Article  CAS  Google Scholar 

  • Dinel, A. L., Rey, C., Bonhomme, C., Le Ruyet, P., Joffre, C., & Layé, S. (2016). Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice. Prostaglandins. Leukotrienes and Essential Fatty Acids, 109, 29–38.

    Article  CAS  Google Scholar 

  • Drouin, G., Catheline, D., Sinquin, A., Baudry, C., Le Ruyet, P., Rioux, V., et al. (2018). Incorporation of dairy lipids in the diet increased long-chain omega-3 fatty acids status in post-weaning rats. Frontiers in Nutrition, 5, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • EFSA. (2014). Scientific opinion on the essential composition of infant and follow-on formulae. EFSA Journal, 12, 24–32.

    Google Scholar 

  • Favé, G., Leveque, C., Peyrot, J., Pieroni, G., Coste, T. C., & Armand, M. (2007). Modulation of gastric lipolysis by the phospholipid specie: Link to specific lipase-phospholipid interaction at the lipid/water interface? The FASEB Journal, 21, A1010.

    Google Scholar 

  • Fidler, N., & Koletzko, B. (2000). The fatty acid composition of human colostrum. European Journal of Nutrition, 39, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Fuller, K. L., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., Jimenez-Flores, R., & Donovan, S. M. (2013). Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. Journal of Dairy Science, 96, 3488–3497.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Vocking, K., Post, J. A., Van de Heijning, B., Acton, D., Van der Beek, E. M., et al. (2015). A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids and Surfaces B: Biointerfaces, 136, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Gassi, J. Y., Blot, M., Beaucher, E., Robert, B., Leconte, N., Camier, B., et al. (2016). Preparation and characterisation of a milk polar lipids enriched ingredient from fresh industrial liquid butter serum: Combination of physico-chemical modifications and technological treatments. International Dairy Journal, 52, 26–34.

    Article  CAS  Google Scholar 

  • Gianni, M. L., Roggero, P., Baudry, C., Fressange-Mazda, C., Galli, C., Agostoni, C., et al. (2018). An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: A randomized controlled trial. BMC Pediatrics, 18, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grote, V., Verduci, E., Scaglioni, S., Vecchi, F., Contarini, G., Giovannini, M., et al. (2016). Breast milk composition and infant nutrient intakes during the first 12 months of life. European Journal of Clinical Nutrition, 70, 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Gurnida, D. A., Rowan, A. M., Idjradinata, P., Muchtadi, D., & Sekarwana, N. (2012). Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Human Development, 88, 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Hageman, J. H. J., Danielsen, M., Nieuwenhuizen, A. G., Feitsma, A. L., & Dalsgaard, T. K. (2019). Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. International Dairy Journal, 92, 37–49.

    Article  CAS  Google Scholar 

  • Hageman, J. H. J., Keijer, J., Dalsgaard, T. K., Zeper, L. W., Carriere, F., Feitsma, A. L., et al. (2019). Free fatty acid release from vegetable and bovine milk fat-based infant formulas and human milk during two-phase in vitro digestion. Food & Function, 10, 2102–2113.

    Article  CAS  Google Scholar 

  • Hamosh, M., Peterson, J. A., Henderson, T. R., Scallan, C. D., Kiwan, R., Ceriani, R. L., et al. (1999). Protective function of human milk: The milk fat globule. Seminars in Perinatology, 23, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Harzer, G., Haug, M., Dieterich, I., & Gentner, P. R. (1983). Changing patterns of human milk lipids in the course of the lactation and during the day. The American Journal of Clinical Nutrition, 37, 612–621.

    Article  CAS  PubMed  Google Scholar 

  • Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84, 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Hernell, O., Timby, N., Domellof, M., & Lonnerdal, B. (2016). Clinical benefits of milk fat globule membranes for infants and children. The Journal of Pediatrics, 173, S60–S65.

    Article  CAS  PubMed  Google Scholar 

  • Holzmueller, W., & Kulozik, U. (2016). Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. International Dairy Journal, 63, 88–91.

    Article  CAS  Google Scholar 

  • Innis, S. M. (2011). Dietary triacylglycerol structure and its role in infant nutrition. Advances in Nutrition, 2, 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, R., Ferris, A., & Lammikeefe, C. (1992). Lipids in human-milk and infant formulas. Annual Review of Nutrition, 12, 417–441.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. (1999). Lipids in human milk. Lipids, 34, 1243–1271.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Flores, R., & Brisson, G. (2008). The milk fat globule membrane as an ingredient: Why, how, when? Dairy Science & Technology, 88, 5–18.

    Article  CAS  Google Scholar 

  • Kallio, H., Nylund, M., Bostrom, P., & Yang, B. (2017). Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chemistry, 233, 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S., Hepworth, A. R., Prime, D. K., Lai, C. T., Trengove, N. J., & Hartmann, P. E. (2013). Variation in fat, lactose, and protein composition in breast milk over 24 hours: Associations with infant feeding patterns. Journal of Human Lactation, 29, 81–89.

    Article  PubMed  Google Scholar 

  • Kim, K.-M., Park, T.-S., & Shim, S.-M. (2015). Optimization and validation of HRLC-MS method to identify and quantify triacylglycerol molecular species in human milk. Analytical Methods, 7, 4362–4370.

    Article  CAS  Google Scholar 

  • Kinney, H., Karthigasan, J., Borenshteyn, N., Flax, J., & Kirschner, D. (1994). Myelination in the developing human brain - Biochemical correlates. Neurochemical Research, 19, 983–996.

    Article  CAS  PubMed  Google Scholar 

  • Koletzko, B. (2016). Human milk lipids. Annals of Nutrition & Metabolism, 69(Suppl 2), 28–40.

    Article  Google Scholar 

  • Koletzko, B., Baker, S., Cleghorn, G., Neto, U. F., Gopalan, S., Hernell, O., et al. (2005). Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. Journal of Pediatric Gastroenterology and Nutrition, 41, 584–599.

    Article  PubMed  Google Scholar 

  • Le Huerou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Menard, O., Le Normand, L., Perrier, C., et al. (2018). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 57, 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Lecomte, M., Bourlieu, C., Meugnier, E., Penhoat, A., Cheillan, D., Pineau, G., et al. (2015). Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice–3. The Journal of Nutrition, 145, 1770–1777.

    Article  CAS  PubMed  Google Scholar 

  • Leermakers, E. T. M., Moreira, E. M., Kiefte-de Jong, J. C., Darweesh, S. K. L., Visser, T., Voortman, T., et al. (2015). Effects of choline on health across the life course: A systematic review. Nutrition Reviews, 73, 500–522.

    Article  PubMed  Google Scholar 

  • Lemaire, M., Dou, S., Cahu, A., Formal, M., Le Normand, L., Rome, V., et al. (2018). Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 8, 11656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lien, E. L., Richard, C., & Hoffman, D. R. (2018). DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins, Leukotrienes and Essential Fatty Acids, 128, 26–40.

    Article  CAS  Google Scholar 

  • Linderborg, K. M., Kalpio, M., Makela, J., Niinikoski, H., Kallio, H. P., & Lagstrom, H. (2014). Tandem mass spectrometric analysis of human milk triacylglycerols from normal weight and overweight mothers on different diets. Food Chemistry, 146, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist, S., & Hernell, O. (2010). Lipid digestion and absorption in early life: An update. Current Opinion in Clinical Nutrition and Metabolic Care, 13, 314–320.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Blot, M., Briard-Bion, V., Cirié, C., & Graulet, B. (2017). Butter serums and buttermilks as sources of bioactive lipids from the milk fat globule membrane: Differences in their lipid composition and potentialities of cow diet to increase n-3 PUFA. Food Research International, 100, 864–872.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Bourgaux, C., & Pérez, J. (2013). Solid triacylglycerols within human fat globules: β crystals with a melting point above in-body temperature of infants, formed upon storage of breast milk at low temperature. Food Research International, 54, 1541–1552.

    Article  CAS  Google Scholar 

  • Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology, 95, 863–893.

    Article  CAS  Google Scholar 

  • Lopez, C., Cauty, C., & Guyomarc’h, F. (2019). Unraveling the complexity of milk fat globules to tailor bioinspired emulsions providing health benefits: The key role played by the biological membrane. European Journal of Lipid Science and Technology, 121, 1800201.

    Google Scholar 

  • Lopez, C., Cauty, C., Rousseau, F., Blot, M., Margolis, A., & Famelart, M.-H. (2017). Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Research International, 91, 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Cheng, K., & Perez, J. (2018). Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC. Chemistry and Physics of Lipids, 215, 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Madec, M.-N., & Jiménez-Flores, R. (2010). Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chemistry, 120, 22–33.

    Article  CAS  Google Scholar 

  • Lopez, C., & Ménard, O. (2011). Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids and Surfaces B: Biointerfaces, 83, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Mathiassen, J. H., Nejrup, R. G., Frøkiær, H., Nilsson, Å., Ohlsson, L., & Hellgren, L. I. (2015). Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity. European Journal of Lipid Science and Technology, 117, 1522–1539.

    Article  CAS  Google Scholar 

  • Mendonça, M. A., Araújo, W. M. C., Borgo, L. A., & de Rodrigues Alencar, E. (2017). Lipid profile of different infant formulas for infants. PLoS One, 12, e0177812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalski, M. C., Briard, V., Michel, F., Tasson, F., & Poulain, P. (2005). Size distribution of fat globules in human colostrum, breast milk, and infant formula. Journal of Dairy Science, 88, 1927–1940.

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic, J. J., Schnabl, K. L., Mazurak, V. C., Thomson, A. B. R., & Clandinin, M. T. (2012). Dietary ganglioside reduces proinflammatory signaling in the intestine. Journal of Nutrition and Metabolism, 2012, 1.

    Article  Google Scholar 

  • Miles, E. A., & Calder, P. C. (2017). The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutrition Research, 44, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Motouri, M., Matsuyama, H., Yamamura, J., Tanaka, M., Aoe, S., Iwanaga, T., et al. (2003). Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. Journal of Pediatric Gastroenterology and Nutrition, 36, 241.

    Article  CAS  PubMed  Google Scholar 

  • Mu, H. L., & Hoy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43, 105–133.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A. (2016). Role of sphingolipids in infant gut health and immunity. The Journal of Pediatrics, 173, S53–S59.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, Å., & Duan, R.-D. (2006). Absorption and lipoprotein transport of sphingomyelin. Journal of Lipid Research, 47, 154–171.

    Article  CAS  PubMed  Google Scholar 

  • Norris, G. H., Jiang, C., Ryan, J., Porter, C. M., & Blesso, C. N. (2016). Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of Nutritional Biochemistry, 30, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson, L., Hertervig, E., Jönsson, B. A., Duan, R.-D., Nyberg, L., Svernlöv, R., et al. (2010). Sphingolipids in human ileostomy content after meals containing milk sphingomyelin. The American Journal of Clinical Nutrition, 91, 672–678.

    Article  CAS  PubMed  Google Scholar 

  • Oosting, A., Kegler, D., Wopereis, H. J., Teller, I. C., van de Heijning, B. J. M., Verkade, H. J., et al. (2012). Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatric Research, 72, 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Oosting, A., van Vlies, N., Kegler, D., Schipper, L., Abrahamse-Berkeveld, M., Ringler, S., et al. (2014). Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. British Journal of Nutrition, 111, 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., & Yamashiro, Y. (2003). Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Research, 53, 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Owen, C. G., Whincup, P. H., Kaye, S. J., Martin, R. M., Davey Smith, G., Cook, D. G., et al. (2008). Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. The American Journal of Clinical Nutrition, 88, 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Palmano, K., Rowan, A., Guillermo, R., Guan, J., & Mc Jarrow, P. (2015). The role of gangliosides in neurodevelopment. Nutrients, 7, 3891–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, E. J., Thomson, A. B., & Clandinin, M. T. (2010). Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation. Journal of Pediatric Gastroenterology and Nutrition, 50, 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, J. A., Patton, S., & Hamosh, M. (1998). Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Neonatology, 74, 143–162.

    Article  CAS  Google Scholar 

  • Petit, V., Sandoz, L., & Garcia-Rodenas, C. L. (2017). Importance of the regiospecific distribution of long-chain saturated fatty acids on gut comfort, fat and calcium absorption in infants. Prostaglandins, Leukotrienes and Essential Fatty Acids, 121, 40–51.

    Article  CAS  Google Scholar 

  • Rueda, R. (2007). The role of dietary gangliosides on immunity and the prevention of infection. British Journal of Nutrition, 98, S68–S73.

    Article  CAS  PubMed  Google Scholar 

  • Saarela, T., Kokkonen, J., & Koivisto, M. (2005). Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatrica, 94, 1176–1181.

    Article  PubMed  Google Scholar 

  • Shek, D. T. L., Yu, L., Wu, F. K. Y., Zhu, X., & Chan, K. H. Y. (2017). A 4-year longitudinal study of well-being of Chinese university students in Hong Kong. Applied Research in Quality of Life, 12, 867–884.

    Article  PubMed  Google Scholar 

  • Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Sinanoglou, V. J., Cavouras, D., Boutsikou, T., Briana, D. D., Lantzouraki, D. Z., Paliatsiou, S., et al. (2017). Factors affecting human colostrum fatty acid profile: A case study. PLoS One, 12, e0175817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, H. (2006). The milk fat globule membrane—A biophysical system for food applications. Current Opinion in Colloid & Interface Science, 11, 154–163.

    Article  CAS  Google Scholar 

  • Snow, D. R., Ward, R. E., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science, 94, 2201–2212.

    Article  CAS  PubMed  Google Scholar 

  • Spitsberg, V. L. (2005). Invited review: Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science, 88, 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  • Sprong, R. C., Hulstein, M. F. E., Lambers, T. T., & van der Meer, R. (2012). Sweet buttermilk intake reduces colonisation and translocation of Listeria monocytogenes in rats by inhibiting mucosal pathogen adherence. British Journal of Nutrition, 108, 2026–2033.

    Article  CAS  PubMed  Google Scholar 

  • Straarup, E. M., Lauritzen, L., Faerk, J., Hoy, C. E., & Michaelsen, K. F. (2006). The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. Journal of Pediatric Gastroenterology and Nutrition, 42, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C., Wei, W., Su, H., Zou, X., & Wang, X. (2018). Evaluation of sn-2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage. Food Chemistry, 242, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Hosozawa, M., Kudo, N., Yoshikawa, N., Hisata, K., Shoji, H., et al. (2013). The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain and Development, 35, 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Domellof, E., Hernell, O., Loennerdal, B., & Domellof, M. (2014). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. The American Journal of Clinical Nutrition, 99, 860–868.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Domellöf, M., Lönnerdal, B., & Hernell, O. (2017). Supplementation of infant formula with bovine milk fat globule membranes. Advances in Nutrition, 8, 351–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timby, N., Hernell, O., Vaarala, O., Melin, M., Lönnerdal, B., & Domellöf, M. (2015). Infections in infants fed formula supplemented with bovine milk fat globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 384.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Loennerdal, B., Hernell, O., & Domellof, M. (2014). Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatric Research, 76, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Tu, A., Ma, Q., Bai, H., & Du, Z. (2017). A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chemistry, 221, 555–567.

    Article  CAS  PubMed  Google Scholar 

  • Vanderghem, C., Bodson, P., Danthine, S., Paquot, M., Deroanne, C., & Blecker, C. (2010). Milk fat globule membrane and buttermilks: From composition to valorization. Biotechnologie, Agronomie, Société et Environnement, 14, 485–500.

    Google Scholar 

  • Veereman-Wauters, G., Staelens, S., Rombaut, R., Dewettinck, K., Deboutte, D., Brummer, R.-J., et al. (2012). Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition, 28, 749–752.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition, 3, 465S–472S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Yu, B., Karim, M., Hu, H., Sun, Y., McGreevy, P., et al. (2007). Dietary sialic acid supplementation improves learning and memory in piglets. The American Journal of Clinical Nutrition, 85, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Shimizu, Y., Kaneko, S., Hanaka, S., Abe, T., Shimasaki, H., et al. (2000). Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatrics International, 42, 14–20.

    Article  CAS  PubMed  Google Scholar 

  • WHO. (2011). Exclusive breastfeeding for six months best for babies everywhere. WHO: World Health Organization. Retrieved from http://www.who.int/mediacentre/news/statements/2011/breastfeeding_20110115/en/

  • Ya, B., Liu, W., Ge, F., Zhang, Y., Zhu, B., & Bai, B. (2013). Dietary cholesterol alters memory and synaptic structural plasticity in young rat brain. Neurological Sciences, 34, 1355–1365.

    Article  PubMed  Google Scholar 

  • Yao, Y., Zhao, G., Xiang, J., Zou, X., Jin, Q., & Wang, X. (2016). Lipid composition and structural characteristics of bovine, caprine and human milk fat globules. International Dairy Journal, 56, 64–73.

    Article  CAS  Google Scholar 

  • Zavaleta, N., Kvistgaard, A. S., Graverholt, G., Respicio, G., Guija, H., Valencia, N., et al. (2011). Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. Journal of Pediatric Gastroenterology and Nutrition, 53, 561–568.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Qi, C., Zhang, Y., Wei, W., Jin, Q., Xu, Z., et al. (2019). Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chemistry, 275, 712–720.

    Article  CAS  PubMed  Google Scholar 

  • Zou, X.-Q., Guo, Z., Huang, J.-H., Jin, Q.-Z., Cheong, L.-Z., Wang, X.-G., et al. (2012). Human milk fat globules from different stages of lactation: A lipid composition analysis and microstructure characterization. Journal of Agricultural and Food Chemistry, 60, 7158–7167.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez, C. (2020). Dairy Lipids in Infant Formulae to Reduce the Gap with Breast Milk Fat Globules: Nutritional and Health Benefits Associated to Opportunities. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_15

Download citation

Publish with us

Policies and ethics