Skip to main content

PC-Based Sensitivity Analysis of the Basic Reproduction Number of Population and Epidemic Models

  • Chapter
  • First Online:
Current Trends in Dynamical Systems in Biology and Natural Sciences

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 21))

Abstract

The basic reproduction number, simply denoted by R 0, plays a fundamental role in the analysis of population and epidemic models. However in mathematical modelling the specification of the input parameters can be crucial since, due to some limitations in experimental data available, they can be uncertain and often represented as random quantities in a suitable probabilistic framework. In this context the Polynomial Chaos Expansions (PCEs), coupled with suitable numerical methods, furnish important tools for the sensitivity analysis and the uncertainty quantification of the random model response. The aim of this paper is to describe how the variability of R 0 is affected by the variability of the input parameters, through the evaluation of Sobol’ indices by PC-based methods. The use of a suitable and new computational model of R 0 allows also to consider more complex epidemic models, where R 0 is defined as the spectral radius of the infinite-diminensional next generation operator. The efficiency and versatility of the numerical approach are confirmed by the experimental analysis of two examples of increasing complexity.

The author “Rossana Vermiglio” was a member of the INdAM Research group GNCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barril, C., Calsina, A., Ripoll, J.: A practical approach to R0 in continuous-time ecological models. Math. Methods Appl. Sci. 41(18), 8432–8445 (2017)

    Article  Google Scholar 

  2. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27(2), 482–495 (2005)

    Article  MathSciNet  Google Scholar 

  3. Breda, D., Maset, S., Iannelli, M., Vermiglio, R.: Stability analysis of the Gurtin-MacCamy model. SIAM J. Numer. Anal. 46, 980–995 (2008)

    Article  MathSciNet  Google Scholar 

  4. Breda, D., Maset, S., Vermiglio, R.: Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB. SpringerBriefs in Electrical and Computer Engineering. Springer, New York (2015)

    Google Scholar 

  5. Breda, D., Florian, F., Ripoll, J., Vermiglio, R.: Efficient numerical computation of the basic reproduction number for structured populations. Int. J. Non. Sci. Num. Sim. (2019)

    Google Scholar 

  6. Breziz, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Google Scholar 

  7. Cameron, R.H., Martin, W.T.: The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals. Ann. Math. Sec. Ser. 48(2), 385–392 (1947)

    Article  MathSciNet  Google Scholar 

  8. Chastaing, G., Gamboa, F., Prieur, C.: Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis. Electron. J. Stat. 6, 2420–2448 (2012)

    Article  MathSciNet  Google Scholar 

  9. Crestaux, T., Le Maître, O., Martinez, J.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 1161–1172 (2009)

    Article  Google Scholar 

  10. Cushing, J.M., Diekmann, O.: The many guises of R 0. J. Theor. Biol. 404 295–302 (2016)

    Article  Google Scholar 

  11. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  Google Scholar 

  12. Ernst, O.G., Muglera, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal.. 46(2), 317–339 (2012)

    Article  MathSciNet  Google Scholar 

  13. Florian, F.: Numerical Computation of the basic reproduction number in population dynamics. Master Thesis in Mathematics, University of Udine (2018)

    Google Scholar 

  14. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991) (Revised edn Dover Publications, 2004)

    Book  Google Scholar 

  15. Heesterbeek, J.A.P.: A brief history of R 0 and a recipe for its calculation. Acta Biotheor. 50, 189–204 (2002)

    Article  Google Scholar 

  16. Heesterbeek, J.A.P., Dietz, K.: The concept of R 0 in epidemic theory. Stat. Neerlandica 50(1), 89–110 (1996)

    Article  MathSciNet  Google Scholar 

  17. Inaba, H.: Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990)

    Article  MathSciNet  Google Scholar 

  18. Inaba, H.: The Malthusian parameter and R 0 for heterogeneous populations in periodic environments. Math. Biosci. Eng. MBE 9(2), 313–346 (2012). Available Online https://www.researchgate.net/publication/230696233_The_Malthusian_parameter_and_R_0_ for_heterogeneous_populations_in_periodic_environments

  19. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore (2017)

    Book  Google Scholar 

  20. Iooss, B., Le Maître, P.: A review on global sensitivity analysis methods. In: Meloni, C., Dellino, G. (eds.) Uncertainty Management in Simulation-Optimization of ComplexSystems: Algorithms and Applications. Springer, Boston (2015)

    Google Scholar 

  21. Kuniya, T.: Numerical approximation of the basic reproduction number for a class of age-structured epidemic models. Appl. Math. Lett. 73 106–112 (2017)

    Article  MathSciNet  Google Scholar 

  22. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Springer, Berlin (2010)

    Book  Google Scholar 

  23. Malthus, T.: An Essay on the Principle of Population. Publisher J. Johnson, London (1798). Available online http://www.esp.org

  24. Marelli, S., Sudret, B.: UQLab: a framework for uncertainty quantification in Matlab. In: Proceedings of 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool (2014), pp. 2554–2256. https://www.uqlab.com

  25. Marelli, S., Lamas, C., Sudret, B., Konakli, K., Mylonas, C.: UQLab user manual-Sensitivity analysis. ReportUQLab-V1.1-106, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich (2018)

    Google Scholar 

  26. Ross, R.: The Prevention of Malaria. John Murray, London (1911). Available Online http://krishikosh.egranth.ac.in/handle/1/2047440

  27. Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. New York, Wiley (2000)

    MATH  Google Scholar 

  28. Samsuzzoha, M., Singh M., David Lucy, D.: A numerical study on an influenza epidemic model with vaccination and diffusion. Appl. Math. Comput. 219, 122–141 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Samsuzzoha, M., Singh M., David Lucy D.: Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Comput. 37, 903–915 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  32. Sobol, I.M., Kucherenko, S.S.: Global sensitivity indices for nonlinear mathematical models. Rev. Wilmott Mag. 1, 56–61 (2005)

    Article  Google Scholar 

  33. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  34. Van Der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  35. Vermiglio, R.: Polynomial chaos expansions for the stability analysis of uncertain delay differential equations. SIAM/ASA J. Uncertain. Quantif. 5(1), 278–303 (2017)

    Article  MathSciNet  Google Scholar 

  36. Vermiglio, R., Zamolo, A.: Sensitivity analysis for stability of uncertain delay differential equations using polynomial chaos expansions. In: Valmorbida, G., W. Michiels, and P. Pepe (eds.) Incorporating Constraints on the Analysis of Delay and Distributed Parameter Systems Adv. Del. Dyn. Ser. Springer, Heidelberg (2020)

    Google Scholar 

  37. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  38. Xiu, D.: Numerical Methods for Stochastic Computation. Princeton University Press, Princeton, NJ (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Vermiglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florian, F., Vermiglio, R. (2020). PC-Based Sensitivity Analysis of the Basic Reproduction Number of Population and Epidemic Models. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds) Current Trends in Dynamical Systems in Biology and Natural Sciences. SEMA SIMAI Springer Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-41120-6_11

Download citation

Publish with us

Policies and ethics