Skip to main content

Abstract

This chapter shortly presents the concepts of pulsed electric energy (PEE) generators, treatment protocols and design of batch and continuous treatment chambers (nano- and micro-scale fluidic chips, small-scale cuvettes, laboratory, pilot and industrial scale chambers). The manufacturers of small scale electroporation devices and large scale PEE equipments are also presented with detailing on the types of equipment produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram F, Smelt J, Bos R, Wouters PC (2003) Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J Appl Microbiol 94:571–579

    Article  CAS  PubMed  Google Scholar 

  • Amaxa G (2019) NucleofectorВ® II manual. http://icob.sinica.edu.tw/pubweb/bio-chem/Core%20Facilities/Data/R401-core/Nucleofector_Manual_II_Apr06.pdf

  • Arc_Aroma_Pures (2019) The quality and quantity improvements achievable with the CEPTВ® platform shows great potential for the food sector. https://www.arcaroma.com/food/

  • Aronsson K, Rönner U, Borch E (2005) Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int J Food Microbiol 99:19–32

    Article  CAS  PubMed  Google Scholar 

  • Asavasanti S, Ristenpart W, Stroeve P, Barrett DM (2011) Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. J Food Sci 76(1):E96–E111

    Article  CAS  Google Scholar 

  • Asavasanti S, Stroeve P, Barrett DM et al (2012) Enhanced electroporation in plant tissues via low frequency pulsed electric fields: influence of cytoplasmic streaming. Biotechnol Prog 28:445–453. https://doi.org/10.1002/btpr.1507

    Article  CAS  PubMed  Google Scholar 

  • Basis (2015) Basis electronique de puissance. http://www.basis-ep.com

  • Bazhal M, Lebovka N, Vorobiev E (2003) Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues. Biosyst Eng 86:339–345

    Article  Google Scholar 

  • Behlke (2019) Behlke product lines. Laboratory pulser & OEM pulser units. http://www.behlke.com/separations/separation_d.htm

  • Ben Ammar J (2011) Etude de l’effet des champs electriques pulses sur la congelation des produits vegetaux. Ph.D. Thesis, Compiegne: Universite de Technologie de Compiegne

    Google Scholar 

  • Ben Ammar J, Lanoisellé J-L, Lebovka NI et al (2010) Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophys 5:247–254

    Article  Google Scholar 

  • Bio-Rad Laboratories I (2019) Electroporation. http://www.bio-rad.com

  • Blahovec J, Kouřím P, Kindl M (2015) Low-temperature carrot cooking supported by pulsed electric field – DMA and DETA thermal analysis. Food Bioprocess Technol 8:2027–2035. https://doi.org/10.1007/s11947-015-1554-4

    Article  CAS  Google Scholar 

  • Bodénès P (2017) Etude de l’application de champs électriques pulsés sur des microalgues en vue de l’extraction de lipides neutres. Ph.D. Thesis, L’Universite Paris-Saclay preparee à l’Ecole Normale Superieure de Cachan (Ecole Normale Superieure Paris-Saclay)

    Google Scholar 

  • Bodénès P, Wang H-Y, Lee T-H et al (2019) Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. Biotechnol Biofuels 12:33

    Article  PubMed  PubMed Central  Google Scholar 

  • BTX HA (2019) Electroporation & electrofusion products. http://www.harvardapparatus.com

  • Campbell D, Harper J, Natham V et al (2008) A compact high voltage nanosecond pulse generator. In: Proceedings of ESA (electrostatics society of America) annual meeting on electrostatics, paper H3, 12 pp. pp 1–12

    Google Scholar 

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80:755–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čemažar J, Miklavčič D, Kotnik T (2013) Microfluidic devices for manipulation, modification and characterization of biological cells in electric fields--a review. Electron Compon Mater 43:143–161

    Google Scholar 

  • Čemažar J, Ghosh A, Davalos RV (2017) Electrical manipulation and sorting of cells. In: Microtechnology for cell manipulation and sorting. Springer, Cham, pp 57–92

    Chapter  Google Scholar 

  • Chang L, Li L, Shi J et al (2016) Micro−/nanoscale electroporation. Lab Chip 16:4047–4062

    Article  CAS  PubMed  Google Scholar 

  • Clark JP (2006) Pulsed electric field processing. Food Technol 60:66–67

    Google Scholar 

  • CoolWave_Processing (2019) How does PurePulse work? http://www.purepulse.eu

  • Cortese P, Dellacasa G, Gemme R et al (2011) A pulsed electric field (PEF) bench static system to study bacteria inactivation. Nucl Phys B - Proc Suppl 215:162–164. https://doi.org/10.1016/j.nuclphysbps.2011.03.165

    Article  CAS  Google Scholar 

  • De Vito F, Ferrari G, Lebovka NI et al (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Article  Google Scholar 

  • Diversified_Technologies (2019) Food and wastewater processing. http://www.divtecs.com/food-and-wastewater-processing

  • Dunn J (1996) Pulsed light and pulsed electric field for foods and eggs. Poult Sci 75:1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Elea (2019) Pulsed Electric Field systems (PEF) to the food, beverage & scientific sectors. https://elea-technology.de/

  • EnergyPulse Systems Lda (2016) EPULSUS®, high performance pulse generators. http://energypulsesystems.pt

  • Eppendorf VDG (2019) Eppendorf EporatorВ®, operating manual. https://geneseesci.com/wp-content/uploads/2013/12/Eporator-Electroporator-User-Manual.pdf

  • Evrendilek GA, Zhang QH (2005) Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli O157:H7. J Food Eng 68:271–276

    Article  Google Scholar 

  • Flisar K, Meglic SH, Morelj J et al (2014) Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 100:44–51. https://doi.org/10.1016/j.bioelechem.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Foltz G (2012) Algae lysis with pulsed electric fields. Master of Science Thesis, California State Polytechnic University, Pomona

    Google Scholar 

  • Fox MB, Esveld DC, Valero A et al (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485

    Article  CAS  PubMed  Google Scholar 

  • Fox MB, Esveld DC, Mastwijk H, Boom RM (2008) Inactivation of L. plantarum in a PEF microreactor: the effect of pulse width and temperature on the inactivation. Innov Food Sci Emerg Technol 9:101–108

    Article  CAS  Google Scholar 

  • Frey W, Gusbeth C, Sakugawa T, Sack M, Mueller G, Sigler J, Vorobiev E, Lebovka N, êlvarez I, Raso J, Heller LC, Malik MA, Eing C, Teissie J (2017) Environmental applications, food and biomass processing by pulsed electric fields. In: Akiyama H, Heller R (eds) Bioelectrics. Springer Nature, Japan, pp 389–476

    Google Scholar 

  • Goettel M, Eing C, Gusbeth C et al (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408

    Article  Google Scholar 

  • Goettsch C, Roelofs H (2014) Stew cooked in minutes. The sustainable breakthrough in food preparation. Voedingsindustrie 2:8–9

    Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta (BBA)-General Subj 148:789–800

    Article  CAS  Google Scholar 

  • Hu N, Yang J, Joo SW et al (2013) Cell electrofusion in microfluidic devices: a review. Sensors Actuators B Chem 178:63–85

    Article  CAS  Google Scholar 

  • Intracel AEL (2019) TSS20 programmable square wave electroporator. http://intracel.co.uk/wp-content/uploads/TSS20-Flyer-1.pdf

  • IXL_e-Cooker_B.V. (2019) E-Cooking. http://www.e-cooker.eu/e-cooking/

  • Kempkes MA, Tokuşoğlu Ö (2014) PEF systems for industrial food processing and related applications. In: Tokuşoğlu Ö, Swanson BG (eds) Improving food quality with novel food processing technologies. CRC Press/Taylor & Francis Group, Boca Raton, pp 427–453

    Chapter  Google Scholar 

  • Kempkes MA, Tokusoglu O (2015) In: Tokusoglu O, Swanson BG (eds) Improving food quality with novel food processing technologies. CRC Press/Taylor & Francis LLC, Boca Raton, pp 427–453

    Google Scholar 

  • Kempkes M, Roth I, Reinhardt N (2012) Enhancing industrial processes by pulsed electric fields. In: Proceedings of Euro-Asian pulsed power conference, Karlsruhe, pp 1–4

    Google Scholar 

  • Kempkes M, Simpson R, Roth I (2016) Removing barriers to commercialization of PEF systems and processes. In: Proceedings of 3rd school on pulsed electric field processing of food. Institute of Food and Health, pp 1–6

    Google Scholar 

  • Kim K, Lee WG (2017) Electroporation for nanomedicine: a review. J Mater Chem B 5:2726–2738

    Article  CAS  PubMed  Google Scholar 

  • Lebovka N, Vorobiev E (2011) Food and biomaterials processing assisted by electroporation. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press/Taylor & Francis Group, Boca Raton, pp 463–490

    Google Scholar 

  • Lebovka NI, Bazhal MI, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innov Food Sci Emerg Technol 2:113–125

    Article  Google Scholar 

  • Lebovka NI, Praporscic I, Ghnimi S, Vorobiev E (2005) Does electroporation occur during the ohmic heating of food? J Food Sci 70:E308–E311

    Article  CAS  Google Scholar 

  • Lelieveld H, Mastwijk H, Oord G, et al (2011) Cooking in seconds with PEF. More nutrients: better taste. http://www.innova-uy.info

  • Lo Y-J, Lei U (2019) A continuous flow-through microfluidic device for electrical lysis of cells. Micromachines 10:247

    Article  PubMed Central  Google Scholar 

  • Lonza-Group AG (2019) NucleofectorВ® manual. http://bio.lonza.com/go/literature/104.pdf

  • Mañas P, Barsotti L, Cheftel JC (2001) Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents. Innov Food Sci Emerg Technol 2:239–249

    Article  Google Scholar 

  • Martin-Belloso O, Vega-Mercado H, Qin BL et al (1997) Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. J Food Process Preserv 21:193–208

    Article  Google Scholar 

  • Mirus BLLC (2019) From the transfection experts, the new ingenio® ezporator® electroporation system. https://www.mirusbio.com/

  • Movahed S (2015) Microfluidic cell electroporation. In: Encyclopedia of microfluidics and nanofluidics. Springer, Boston, pp 1874–1882

    Chapter  Google Scholar 

  • Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14:1060–1073

    Article  CAS  PubMed  Google Scholar 

  • Nepa-Gene CL (2019) Electroporation & electrofusion products. http://www.nepagene.jp

  • Ohshima T, Tanino T, Kameda T, Harashima H (2016) Engineering of operation condition in milk pasteurization with PEF treatment. Food Control 68:297–302

    Article  Google Scholar 

  • Parniakov O, Adda P, Bals O et al (2017) Effects of pulsed electric energy on sucrose nucleation in supersaturated solutions. J Food Eng 199:19–26

    Article  CAS  Google Scholar 

  • Pourzaki A, Mirzaee H (2008) Pulsed electric field generators in food processing. In: 18th National Congress on Food Technology in Mashhad (Iran), pp 1–7

    Google Scholar 

  • Pulsemaster (2019) Pulsed electric field processing for the food industry. https://www.pulsemaster.us

  • Qin B-L, Zhang Q, Barbosa-Cánovas GV et al (1994) Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Trans Dielectr Electr Insul 1:1047–1057. https://doi.org/10.1109/94.368658

    Article  Google Scholar 

  • Qu B, Eu Y-J, Jeong W-J, Kim D-P (2012) Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal. Lab Chip 12:4483–4488

    Article  CAS  PubMed  Google Scholar 

  • Raso J, Alvarez I, Condón S, Trepat FJS (2000) Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innov Food Sci Emerg Technol 1:21–29

    Article  Google Scholar 

  • Raso J, Frey W, Ferrari G et al (2016) Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov Food Sci Emerg Technol 37:312–321

    Article  Google Scholar 

  • Reberšek M, Miklavčič D (2011) Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika 52:12–19

    Article  Google Scholar 

  • Rebersek M, Miklavcic D, Bertacchini C, Sack M (2014) Cell membrane electroporation-Part 3: the equipment. IEEE Electr Insul Mag 30:8–18

    Article  Google Scholar 

  • Rockenbach A, Sudarsan S, Berens J et al (2019) Microfluidic irreversible electroporation—a versatile tool to extract intracellular contents of bacteria and yeast. Meta 9:211

    CAS  Google Scholar 

  • Sampedro F, Rivas A, Rodrigo D et al (2007) Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice--milk based beverage: effect of process parameters. J Food Eng 80:931–938

    Article  Google Scholar 

  • ScandiNova Systems AB (2019) Pulsed power systems with outstanding reliability and precision. http://www.scandinovasystems.com/

  • Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR (2017) A review on macroscale and microscale cell lysis methods. Micromachines (Basel) 8:83

    Article  Google Scholar 

  • Shi J, Ma Y, Zhu J et al (2018) A review on electroporation-based intracellular delivery. Molecules 23:3044

    Article  PubMed Central  CAS  Google Scholar 

  • Sun B, Sato M, Harano A, Clements JS (1998) Non-uniform pulse discharge-induced radical production in distilled water. J Electrost 43:115–126

    Article  CAS  Google Scholar 

  • Teissié J, Escoffre J, Rols M, Golzio M (2008) Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications. Radiol Oncol 42:196–206

    Article  Google Scholar 

  • Thermo-Fisher S (2019) Neon transfection system. https://www.thermofisher.com/ua/en/home/life-science/cell-culture/transfection/neon-transfection-system.html

  • Toepfl S (2006) Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing: applications, process and equipment design and cost analysis. Ph.D. Thesis, von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin, Berlin

    Google Scholar 

  • Toepfl S (2012) Pulsed electric field food processing: industrial equipment design and commercial applications. Stewart Postharvest Rev 8:1–7. https://doi.org/10.2212/spr.2012.2.4

    Article  Google Scholar 

  • Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V (2014) Chapter 6 – Overview of pulsed electric fields processing for food. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Academic Press, San Diego, pp 93–114

    Chapter  Google Scholar 

  • Van Oord Govert, Roelofs JTM (2016) Low field strength PEF cooking. Patent EU WO 2016008868 A1

    Google Scholar 

  • VitaScientific (2019) Celetrix biotechnologies. The all new high efficiency cell electroporator. http://www.celetrix.com/upfile/doc/Celetrix_Brochure.pdf

  • Vitave G (2019) Pulsed electric fields. https://www.vitave.eu/technologies/pef

  • Vorobiev E, Lebovka N (2010) Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Eng Rev 2:95–108

    Article  CAS  Google Scholar 

  • Wang T, Chen H, Yu C, Xie X (2019) Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform. Environ Int 132:105040

    Article  PubMed  Google Scholar 

  • Wek-Tec e. K (2019) Semi-automated R&D PEF system and 250–500 l/h PEF system for juices. http://www.wek-tec.de/wt-systems.htm

  • Wouters PC, Smelt JPPM (1997) Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnol 11:193–229. https://doi.org/10.1080/08905439709549933

    Article  Google Scholar 

  • Wouters PC, Dutreux N, Smelt JPPM, Lelieveld HLM (1999) Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl Environ Microbiol 65:5364–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Jiang J (2011) Application of microfluidics in cell transfection: a review. Sheng wu gong cheng xue bao= Chinese. J Biotechnol 27:1417–1427

    CAS  Google Scholar 

  • Yang Z, Chang L, Chiang C, James Lee L (2015) Micro−/nano-electroporation for active gene delivery. Curr Pharm Des 21:6081–6088

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N. (2020). Pulse Generators and Producers of Equipment. In: Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-40917-3_4

Download citation

Publish with us

Policies and ethics