Skip to main content

Abstract

Biomass usually refers to the nonfood part of plants, by-products and wastes. Various biomass resources include wood wastes, grass and herbaceous crops, agricultural and industrial residues like bagasse, sugar beet pulp and molasses, oilseed residues, municipal solid wastes, aquatic plants, microalgae, animal wastes, etc. Dedicated feedstocks are typically sugar crops (e.g., sugarbeet, sugarcane), starch crops (e.g., wheat, corn, sweet sorghum), lignocellulosic crops and residues (e.g., wood, switchgrass), oil-based crops (e.g., rapeseed, soya, palm oil), grasses (e.g., green plant materials, grass silage, immature cereals and plant shoots), marine biomass (e.g., micro and macro algae, seaweed).

This chapter discusses potential applications of PEE on biorefineries. The examples of PEE applications for the recovery of valuable extractives (proteins, pigments, lipids, phenolics) from oilseed and lignocellulosic biomass feedstocks (leafs, stems, wood barks ) and for the delignification of lignocellulosic biomass are demonstrated. Current results and detailed review of PEE applications useful for microalgae biorefineries (recovery of carbohydrates, chlorophylls, proteins, and lipids, better growth of microalgae strains) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenoza M, Benito M, Saldaña G et al (2013) Effects of pulsed electric field on yield extraction and quality of olive oil. Food Bioprocess Technol 6:1367–1373

    Article  Google Scholar 

  • Aspé E, Fernández K (2011) The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind Crop Prod 34:838–844

    Article  CAS  Google Scholar 

  • Barba FJ, Boussetta N, Vorobiev E (2015a) Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: effect of high voltage electrical discharges. Innov Food Sci Emerg Technol 31:67–72

    Article  CAS  Google Scholar 

  • Barba FJ, Grimi N, Vorobiev E (2015b) New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 7:45–62

    Article  CAS  Google Scholar 

  • Bellinger EG, Sigee DC (2015) Freshwater algae: identification, enumeration and use as bioindicators. Wiley, Chichester

    Google Scholar 

  • Boonchoo N, Tongprasan T, Tangduangdee C, Asavasanti S (2014) Effect of ohmic pretreatment at different electrical field strengths on yield and quality of lime oil obtained from hydrodistillation. In: ICSAF2014: international conference on sustainable global agricultural and food security, School of Biotechnology, Assumption University, Thailand. School of Biotechnology, Assumption University, Samut Prakan, pp 60–66

    Google Scholar 

  • Borowitzka MA, Moheimani NR (eds) (2013) Algae for biofuels and energy. Springer, Dordrecht

    Google Scholar 

  • Bouras M (2015) Etude comparative et optimisation de prétraitements des écorces de bois pour l’extraction des composés phénoliques. Ph.D. Thesis, Universite de Technologie de Compiegne, Compiegne

    Google Scholar 

  • Bouras M, Chadni M, Barba FJ et al (2015) Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind Crop Prod 77:590–601

    Article  CAS  Google Scholar 

  • Bouras M, Grimi N, Bals O, Vorobiev E (2016) Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind Crop Prod 80:50–58

    Article  CAS  Google Scholar 

  • Boussetta N, Vorobiev E (2014) Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. C R Chim 17:197–203

    Article  CAS  Google Scholar 

  • Boussetta N, Vorobiev E, Le LH et al (2012) Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT - Food Sci Technol 46:127–134. https://doi.org/10.1016/j.lwt.2011.10.016

    Article  CAS  Google Scholar 

  • Boussetta N, Lesaint O, Vorobiev E (2013a) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg Technol 19:124–132. https://doi.org/10.1016/j.ifset.2013.03.007

    Article  CAS  Google Scholar 

  • Boussetta N, Turk M, De Taeye C et al (2013b) Effect of high voltage electrical discharges, heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake. Ind Crop Prod 49:690–696

    Article  CAS  Google Scholar 

  • Boussetta N, Soichi E, Lanoisellé J-L, Vorobiev E (2014) Valorization of oilseed residues: extraction of polyphenols from flaxseed hulls by pulsed electric fields. Ind Crop Prod 52:347–353

    Article  CAS  Google Scholar 

  • Brahim M, Boussetta N, Grimi N et al (2016a) Innovative physically-assisted soda fractionation of rapeseed hulls for better recovery of biopolymers. RSC Adv 6:19833–19842

    Article  CAS  Google Scholar 

  • Brahim M, El Kantar S, Boussetta N et al (2016b) Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenergy 95:92–98

    Article  CAS  Google Scholar 

  • Brahim M, Fernandez BLC, Regnier O et al (2017) Impact of ultrasounds and high voltage electrical discharges on physico-chemical properties of rapeseed straw’s lignin and pulps. Bioresour Technol 237:11–19

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Buchmann L, Brändle I, Haberkorn I et al (2019a) Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour Technol 291:121870

    Article  CAS  PubMed  Google Scholar 

  • Buchmann L, Frey W, Gusbeth C et al (2019b) Effect of nanosecond pulsed electric field treatment on cell proliferation of microalgae. Bioresour Technol 271:402–408

    Article  CAS  PubMed  Google Scholar 

  • Bundhoo ZMA, Mudhoo A, Mohee R (2013) Promising unconventional pretreatments for lignocellulosic biomass. Crit Rev Environ Sci Technol 43:2140–2211

    Article  CAS  Google Scholar 

  • Bux F (ed) (2013) Biotechnological applications of microalgae: biodiesel and value-added products. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Carré P, Citeau M, Robin G, Estorges M (2016) Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL (Oilseeds Fats, Crop Lipids) 23:A302

    Google Scholar 

  • Castro I, Oliveira C, Domingues L et al (2012) The effect of the electric field on lag phase, β-galactosidase production and plasmid stability of a recombinant Saccharomyces cerevisiae strain growing on lactose. Food Bioprocess Technol 5:3014–3020

    Article  CAS  Google Scholar 

  • Chakraborty D, Das J, Das PK et al (2017) Evaluation of the parameters affecting the extraction of sesame oil from sesame (Sesamum indicum L.) seed using soxhlet apparatus. Int Food Res J 24:691

    CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Coustets M, Al-Karablieh N, Thomsen C, Teissié J (2013) Flow process for electroextraction of total proteins from microalgae. J Membr Biol 246:751–760

    Article  CAS  PubMed  Google Scholar 

  • Coustets M, Joubert-Durigneux V, Hérault J et al (2015) Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103:74–81

    Article  CAS  PubMed  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S et al (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  CAS  PubMed  Google Scholar 

  • Da Silva VB, Moreira JB, de Morais MG, Costa JAV (2016) Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 7:73–77

    Article  Google Scholar 

  • Das D (2015) Introduction. In: Das D (ed) Algal biorefinery: an integrated approach, Co-published by Springer International Publishing, Cham, with Capital Publishing Company, New Delhi, pp 1–34

    Google Scholar 

  • Daun JK, Eskin MNA, Hickling D (eds) (2015) Canola: chemistry, production, processing, and utilization. AOCS Press, Urbana

    Google Scholar 

  • De Vito F, Ferrari G, Lebovka NI et al (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer, London

    Book  Google Scholar 

  • Deng Q, Zinoviadou KG, Galanakis CM et al (2015) The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7:357–381

    Article  CAS  Google Scholar 

  • Diouf PN, Stevanovic T, Boutin Y (2009) The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind Crop Prod 30:297–303

    Article  CAS  Google Scholar 

  • Dobreva A, Tintchev F, Heinz V et al (2010) Effect of pulsed electric fields (PEF) on oil yield and quality during distillation of white oil-bearing rose (Rosa alba L.). Zeitschrift für Arznei-& Gewürzpflanzen 15:127–132

    CAS  Google Scholar 

  • Dobreva A, Tintchev F, Dzhurmanski A, Toepfl S (2013) Effect of pulsed electric fields on distillation of essential oil crops. C R Acad Bulg Sci 66:1255

    Google Scholar 

  • Eing C, Goettel M, Straessner R et al (2013) Pulsed electric field treatment of microalgae—benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907

    Article  CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (eds) (2009) Wood chemistry and biotechnology. Walter de Gruyter GmbH & Co., KG, Berlin

    Google Scholar 

  • Elleuch M, Besbes S, Roiseux O et al (2007) Quality characteristics of sesame seeds and by-products. Food Chem 103:641–650

    Article  CAS  Google Scholar 

  • Fu’aida N, Mulyadi AF, Wijana S (2019) Pulsed application of electric field (PEF) as a pretreatment on betel nut (Areca catechu L). Extraction of natural antioxidants (study of voltage and length of PEF). https://www.researchgate.net/profile/Arie_Mulyadi

  • Gavahian M, Farhoosh R, Javidnia K et al (2015) Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innov Food Sci Emerg Technol 29:161–169

    Article  CAS  Google Scholar 

  • Geada P, Rodrigues R, Loureiro L et al (2018) Electrotechnologies applied to microalgal biotechnology--applications, techniques and future trends. Renew Sust Energ Rev 94:656–668

    Article  Google Scholar 

  • Ghitescu R-E, Volf I, Carausu C et al (2015) Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 22:535–541

    Article  CAS  PubMed  Google Scholar 

  • Ghnimi S, Grimi N, Rabia C, Vorobiev E (2011) Optimization of extraction of phenolic compounds by pulsed electric field and high voltage electrical discharges from the bark and the wood chips of Norway spruce (Picea abies). In: 11th French process engineering conference, Lille, p 6

    Google Scholar 

  • Gikonyo B (ed) (2013) Advances in biofuel production: algae and aquatic plants. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Goettel M, Eing C, Gusbeth C et al (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408

    Article  Google Scholar 

  • Grémy-Gros C, Lanoisellé J-L, Vorobiev E (2009) Application of high-voltage electrical discharges for the aqueous extraction from oilseeds and other plants. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 217–235

    Chapter  Google Scholar 

  • Grimi N, Dubois A, Marchal L et al (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    Article  CAS  PubMed  Google Scholar 

  • Gros C, Lanoisellé J-L, Vorobiev E (2003) Towards an alternative extraction process for linseed oil. Chem Eng Res Des 81:1059–1065

    Article  CAS  Google Scholar 

  • Guderjan M, Töpfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287

    Article  Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg Technol 8:55–62

    Article  CAS  Google Scholar 

  • Guionet A, Hosseini B, Teissié J et al (2017) A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels 10:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guionet A, Hosseini B, Akiyama H, Hosano H (2018) Medium’s conductivity and stage of growth as crucial parameters for efficient hydrocarbon extraction by electric field from colonial micro-algae. Bioelectrochemistry 123:88–93

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK (ed) (2012) Technological innovations in major world oil crops, Volume 1: Breeding, Volume 2: Perspectives. Springer, New York

    Google Scholar 

  • Gusbeth CA, Eing C, Göttel M, Frey W (2013) Boost of algae growth by ultra short pulsed electric field treatment. In: 2013 Abstracts IEEE international conference on plasma science (ICOPS), p 1

    Google Scholar 

  • Haberkorn I, Buchmann L, Hiestand M, Mathys A (2019) Continuous nanosecond pulsed electric field treatments foster the upstream performance of Chlorella vulgaris-based biorefinery concepts. Bioresour Technol 293:122029

    Article  CAS  PubMed  Google Scholar 

  • Harkin JM, Rowe JW (1971) Bark and its possible uses. Research note FPL (Forest Products Laboratory), 091, p 56

    Google Scholar 

  • Housseinpour R, Latibari AJ, Farnood R et al (2010) Fiber morphology and chemical composition of rapeseed (Brassica napus) stems. IAWA J 31:457–464

    Article  Google Scholar 

  • Karimi K (ed) (2015) Lignocellulose-based bioproducts. Springer, Cham

    Google Scholar 

  • Kazmi A (ed) (2011) Advanced oil crop biorefineries. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Kempkes MA (2016) Pulsed electric fields for algal extraction and predator control. In: Miklavcic D (ed) Handbook of electroporation. Springer International Publishing AG, Cham, pp 1–16

    Google Scholar 

  • Kempkes MA, Tokuşoğlu Ö (2014) PEF systems for industrial food processing and related applications. In: Tokuşoğlu Ö, Swanson BG (eds) Improving food quality with novel food processing technologies. CRC Press, Taylor & Francis Group, Boca Raton, pp 427–453

    Chapter  Google Scholar 

  • Kim S-K (ed) (2015) Handbook of marine microalgae: biotechnology advances. Academic, London

    Google Scholar 

  • Lai YS, Parameswaran P, Li A et al (2014) Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresour Technol 173:457–461

    Article  CAS  PubMed  Google Scholar 

  • Laisney J (1984) L’huilerie Moderne, Art et techniques. Francaise pour le Developpement des Fibres Textiles, Paris

    Google Scholar 

  • Luengo E, Condón-Abanto S, Álvarez I, Raso J (2014) Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 247:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Luengo E, Martínez JM, Bordetas A et al (2015a) Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innov Food Sci Emerg Technol 29:15–22

    Article  CAS  Google Scholar 

  • Luengo E, Martínez JM, Coustets M et al (2015b) A comparative study on the effects of millisecond-and microsecond-pulsed electric field treatments on the permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 248:883–891

    Article  CAS  PubMed  Google Scholar 

  • Martínez JM, Gojkovic Z, Ferro L et al (2019) Use of pulsed electric field permeabilization to extract astaxanthin from the Nordic microalga Haematococcus pluvialis. Bioresour Technol 289:121694

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mattar JR, Turk MF, Nonus M et al (2015) S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry 103:92–97

    Article  CAS  PubMed  Google Scholar 

  • Mawson R, Heaney RK, Piskuła M, Kozłowska H (1993) Rapeseed meal-glucosinolates and their antinutritional effects. Part 1. Rapeseed production and chemistry of glucosinolates. Nahrung 37:131–140

    Article  CAS  PubMed  Google Scholar 

  • Meagher LP, Beecher GR, Flanagan VP, Li BW (1999) Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J Agric Food Chem 47:3173–3180

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI (ed) (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Oxford

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Naqvi M, Yan J (2015) First-generation biofuels.Renewable energy biomass resources and biofuel production. In: Yan J (ed) Handbook of clean energy systems. Wiley, Chichester, pp 1–18

    Google Scholar 

  • Nezammahalleh H, Ghanati F, Adams TA II et al (2016) Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. Bioresour Technol 218:700–711

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Höfer R, Taherzadeh M et al (eds) (2015) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Parniakov O, Barba FJ, Grimi N et al (2015a) Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Res 8:128–134

    Article  Google Scholar 

  • Parniakov O, Barba FJ, Grimi N et al (2015b) Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innov Food Sci Emerg Technol 27:79–85

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  PubMed  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity--relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Postma PR, Pataro G, Capitoli M et al (2016) Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field--temperature treatment. Bioresour Technol 203:80–88

    Article  CAS  PubMed  Google Scholar 

  • Puértolas E, de Marañón IM (2015) Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties. Food Chem 167:497–502

    Article  PubMed  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA et al (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  PubMed  Google Scholar 

  • Rego D, Redondo LM, Geraldes V et al (2015) Control of predators in industrial scale microalgae cultures with pulsed electric fields. Bioelectrochemistry 103:60–64

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzym Microb Technol 19:402–420

    Article  CAS  Google Scholar 

  • Sarkis JR, Boussetta N, Blouet C et al (2015a) Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innov Food Sci Emerg Technol 29:170–177

    Article  CAS  Google Scholar 

  • Sarkis JR, Boussetta N, Tessaro IC et al (2015b) Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. J Food Eng 153:20–27

    Article  CAS  Google Scholar 

  • Segovia FJ, Luengo E, Corral-Pérez JJ et al (2015) Improvements in the aqueous extraction of polyphenols from borage (Borago officinalis L.) leaves by pulsed electric fields: pulsed electric fields (PEF) applications. Ind Crop Prod 65:390–396

    Article  CAS  Google Scholar 

  • Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol 45:3795–3802

    Article  CAS  PubMed  Google Scholar 

  • Silve A, Kian CB, Papachristou I et al (2018a) Incubation time after pulsed electric field treatment of microalgae enhances the efficiency of extraction processes and enables the reduction of specific treatment energy. Bioresour Technol 269:179–187

    Article  CAS  PubMed  Google Scholar 

  • Silve A, Papachristou I, Wüstner R et al (2018b) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222

    Article  Google Scholar 

  • Straessner R, Silve A, Eing C et al (2016) Microalgae precipitation in treatment chambers during pulsed electric field (PEF) processing. Innov Food Sci Emerg Technol 37:391–399

    Article  CAS  Google Scholar 

  • Sukardi SS, Bambang DA, Yudy SI (2013) The effect of pulsed electric field (PEF) on glandular trichome and compounds of patchouli oil (Pogostemon cablin, Benth). J Nat Sci Res 3(15):48–57

    Google Scholar 

  • Sukardi FMP, Maimunah HP, Arie FM (2014) The extraction process of rose volatile oil with PEF (pulsed electric field) pretreatment using evaporative solvent method (review of PEF (pulsed electric field) frequencies and extraction times). Jurnal Lulusan TIP FTP UB Blog Staff Univ Brawijaya 10:1–9

    Google Scholar 

  • Thiyam-Holländer U, Eskin NAM, Matthäus B (eds) (2013) Canola and rapeseed: production, processing, food quality, and nutrition. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Tintchev F, Dobreva A, Schulz H, Toepfl S (2012) Effect of pulsed electric fields on yield and chemical composition of rose oil (Rosa damascena Mill.). J Essent Oil Bear Plants 15:876–884

    Article  CAS  Google Scholar 

  • ’tLam GP, Postma PR, Fernandes DA et al (2017) Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res 24:181–187

    Article  Google Scholar 

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  CAS  PubMed  Google Scholar 

  • Vatassery GT, Sheridan MA, Krezowski AM et al (1981) Use of the sulfo-phospo-vanillin reaction in a routine method for determining total lipids in human cerebrospinal fluid. Clin Biochem 14:21–24

    Article  CAS  PubMed  Google Scholar 

  • Villarruel-López A, Ascencio F, Nuño K (2017) Microalgae, a potential natural functional food source--a review. Polish J Food Nutr Sci 67:251–264

    Article  Google Scholar 

  • Yu X, Bals O, Grimi N, Vorobiev E (2015) A new way for the oil plant biomass valorization: polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Ind Crop Prod 74:309–318

    Article  CAS  Google Scholar 

  • Yu X, Gouyo T, Grimi N et al (2016) Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery. Bioresour Technol 199:194–201

    Article  CAS  PubMed  Google Scholar 

  • Zbinden MDA (2011) Investigation of pulsed electric field (PEF) as an intensification pretreatment for solvent lipid extraction from microalgae, utilizing ethyl acetate as a greener substitute to chloroform-based extraction. Master of Science Thesis, University of Kansas, Lawrence

    Google Scholar 

  • Zbinden MDA, Sturm BSM, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Grimi N, Marchal L, Vorobiev E (2019) Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri. Bioprocess Biosyst Eng 42:29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N. (2020). Biomass Feedstocks. In: Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-40917-3_12

Download citation

Publish with us

Policies and ethics