Skip to main content

Historical Background of Processing of Foods and Biomass Feedstock’s by Electricity and Pulsed Electric Energy

  • Chapter
  • First Online:
Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy

Abstract

Effects of electricity on biological objects attracted a great attention of researches over several centuries. Many interesting, intriguing, and unclear phenomena were discovered under application of electricity. The early works on the effects of electricity on germination, vegetation, plants growth, medical applications, and killing of bacteria were published starting from the eighteenth to the beginning of twentieth century. This chapter overviews the history of electricity including applications of direct current (DC), alternative current (AC) and pulsed electric energy (PEE) in the agriculture, medicine, food and related industries. Later studies on the food applications of electricity for pasteurization of milk, inactivation effects of PEE, ohmic heating of foods, electrical breakdown of cell membranes and electroporation concept are also presented (up to the middle of the 1990th).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama H, Heller R (eds) (2017) Bioelectrics. Springer, Japan

    Google Scholar 

  • Allen M (1970) Electrohydraulic sterilizing apparatus. Patent US 3522167

    Google Scholar 

  • Allen M, Soike K (1966) Sterilization by electrohydraulic treatment. Science (80- ) 154:155–157

    Article  CAS  Google Scholar 

  • Allen M, Soike K (1967) Disinfection by electrohydraulic treatment. Science (80- ) 156:524–525

    Article  CAS  Google Scholar 

  • Anderson AK, Finkelstein R (1919) A study of the electropure process of treating milk. J Dairy Sci 2:374–406

    Article  CAS  Google Scholar 

  • Bache RM (1891) Possible sterilization of city water. Proc Am Philos Soc 29:26–39

    Google Scholar 

  • Bailey LH (1894) Electricity and plant growing. Trans Mass Hortic Soc 1894:1–28

    Google Scholar 

  • Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG (1998) Preservation of foods with pulsed electric fields. Academic Press, London

    Google Scholar 

  • Barbosa-Cánovas GV, Pothakamury UR, Gongora-Nieto MM, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic Press, San Diego

    Google Scholar 

  • Bazhal IG, Kupchik MP, Vorona LG, et al (1984) Extraction of sugar from sugar beet in electrical field. Electron Treat Mater (Elektronnaya Obrab Mater J Inst Appl Physics, Chisinau, Repub Mold {in Russ N 1:79–82 (in Russian)

    Google Scholar 

  • Beattie JM, Lewis FC (1913) The utilisation of electricity in the continuous sterilization of milk. J Pathol Bacteriol 18:120–122

    Article  Google Scholar 

  • Beattie JM, Lewis FC (1925) The electric current (apart from the heat generated). A bacteriologibal agent in the sterilization of milk and other fluids. Epidemiol Infect 24:123–137

    CAS  Google Scholar 

  • Bertholon P (1783) De l’électricité des végétaux: ouvrage dans lequel on traite de l'électricité de l'atmosphère sur les plantes, de ses effets sur l'économie des végétaux, de leurs vertus médico & nutritivo-électriques, & principalement des moyens de pratique de l'appliquer utilement à l'agriculture, avec l'invention d'un électro-végétometre. chez P. F. Didot Jeune, A Paris

    Google Scholar 

  • Beveridge AW, Renvoize EB (1988) Electricity: a history of its use in the treatment of mental illness in Britain during the second half of the 19th century. Br J Psychiatry 153:157–162

    Article  CAS  PubMed  Google Scholar 

  • Bezusov AT, Verkhivker YG, Storozhuk VN, Belyavskaya NP (eds) (2010) Flaumenbaum boris lvovich: on the occasion of the 100th birthday. Odessa National Academy of Food Technologies (in Russian)

    Google Scholar 

  • Black JD, Forsyth FR, Fensom DS, Ross RB (1971) Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Can J Bot 49:1809–1815

    Article  Google Scholar 

  • Bologa MK (2004) Research and electro-physico-chemical technologies in the Institute of Applied Physics. Mold J Phys Sci 3:48–60

    Google Scholar 

  • Bologa MK, Litinsky GA (1988) Electric antiseptic effects in the food industry. Chisina/Stiince (in Russian)

    Google Scholar 

  • Brandt B, Edebo L, Hedén CG et al (1962) The effect of submerged electrical discharges on bacteria. Tek Forsk 33:222–229

    Google Scholar 

  • Briggs LJ, Campbell AB, Heald RH, Flint LH (1926) Electroculture. Bull US Dep Agric 1379:1–34

    Google Scholar 

  • Capek JV (1890) Electrical cooking-stove. US Patent 424922

    Google Scholar 

  • Channing WF (1849) Notes on the medical application of electricity. D. Davis, Boston

    Google Scholar 

  • Chernyavskaya LI (2019) Zagoruilko anatoliy yakovlevich. In: Encyclopedia of modern ukraine. Institute of Encyclopedic Research, NAS of Ukraine

    Google Scholar 

  • Christofleau J (1927) Electroculture. Alex Trouchet & Son, Perth, Western Australia

    Google Scholar 

  • Cohn F, Mendelsohn B (1879) Ueber Einwirkung des electrischen Stromes auf die Vermehrung von Bacterien (about the effect of electric current on the growth of bacteria). Beitrage Biol der Pflauzen 3:141–162

    Google Scholar 

  • Colwell HA (1922) An essay on the history of electro-therapy and diagnosis. The British Institute of Radiology

    Google Scholar 

  • COST_EP4Bio2Med (2011) COST action: TD1104 – European network for development of electroporation-based technologies and treatments (EP4Bio2Med). https://www.cost.eu/actions/TD1104

  • Coster HGL, Zimmermann U (1975) Dielectric breakdowm in the membranes of itValonia utricularis. The role of energy dissipation. Biochim Biophys Acta Biomembr 382:410–418

    Article  CAS  Google Scholar 

  • Crompton RE (1894) The use of electricity for cooking and heating. J J Soc Arts, London 43:511

    Google Scholar 

  • Culotta CA (1970) Arsonval, Arsène D. In: Dictionary of scientific biography, vol 1. Charles Scribner’s Sons, New York, pp 302–305

    Google Scholar 

  • Dankevich GN (1995) Intensification of sugar extraction process by thermal and electrical treatment of sugar beet. PhD Thesis (Candidate of technical sciences), Kiev Technological Institute of Food Industry, Kiev, Ukraine (in Russian)

    Google Scholar 

  • De Alwis AAP, de Fryer PJ (1990) The use of direct resistance heating in the food industry. J Food Eng 11:3–27

    Article  Google Scholar 

  • De La Cepede B (1781) Essai sur l’electricite naturelle et artificielle. De l’imprimerie de Monsieur, Paris

    Google Scholar 

  • Diprose MF, Benson FA, Willis AJ (1984) The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms, with special reference to weed control. Bot Rev 50:171–223

    Article  Google Scholar 

  • Doevenspeck H (1960) Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen. DE 1:237–541

    Google Scholar 

  • Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13:968–987

    Google Scholar 

  • Doevenspeck H (1984a) Elektroimpulsverfahren und Vorrichtung zur Behandlung von Stoffen (Electro-pulse method and device for treating of substances). Patent EP 0148380B1

    Google Scholar 

  • Doevenspeck H (1984b) Electric-impulse method for treating substances and device for carrying out the method. Patent US 4994160A

    Google Scholar 

  • Dudgeon EC (1912) Growing crops & plants by electricity. Explaining what has been done on a practical scale. S. Rentell & Co., Ltd, London

    Google Scholar 

  • Dymek K, Dejmek P, Panarese V et al (2012) Effect of pulsed electric field on the germination of barley seeds. LWT – Food Sci Technol 47:161–166

    Article  CAS  Google Scholar 

  • Edebo L (1968) The effect of the photon radiation in the microbicidal effect of transient electric arcs in aqueous systems. Microbiology 50:261–270

    CAS  Google Scholar 

  • Edebo L (1969) Production of photons in the bactericidal effect of transient electric arcs in aqueous systems. Appl Environ Microbiol 17:48–53

    Article  CAS  Google Scholar 

  • Edebo L, Selin I (1968) The effect of the pressure shock wave and some electrical quantities in the microbicidal effect of transient electric arcs in aqueous systems. Microbiology 50:253–259

    CAS  Google Scholar 

  • Edebo L, Holme T, Selin I (1968a) Microbicidal action of compounds generated by transient electric arcs in aqueous systems. Microbiology 53:1–7

    CAS  Google Scholar 

  • Edebo L, Holme T, Selin L (1968b) The effect of compounds generated at the discharge in the microbicidal effect of transient electric arcs in aqueous systems. J Gen Microbiol 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Edebo L, Holme T, Selin I (1969) Influence of the conductivity of the discharge liquid on the microbicidal effect of transient electric arcs in aqueous systems. Appl Environ Microbiol 17:59–62

    Article  CAS  Google Scholar 

  • Edwards GJ (1976) Electrical experiments on citrus seedlings. In: Proceedings of the annual meeting. Florida State Horticultural Society. Alexandria, Virginia, USA, pp 36–39

    Google Scholar 

  • Eing CJ, Bonnet S, Pacher M et al (2009) Effects of nanosecond pulsed electric field exposure on Arabidopsis thaliana. IEEE Trans Dielectr Electr Insul 16:1322–1328

    Article  Google Scholar 

  • Fabre-Palaprat BR (1828) Du Galvanisme Appliqué à la Médecine. Et de Son Efficacit Dans Le Traitement Des Affections Nerveuses, de L’Asthme, Des Paralysies, Des Douleurs Rhumatismales, Des Maladies Chroniques En G n ral, Et Particuli rement Des Maladies Chroniques de L'Es /From Applied Galvanism to Medicine. Selligue et Béchet Jeune, Paris

    Google Scholar 

  • Fedorov NE, Rogov IA (1960) Bactericidal effects of electrical impulses of high voltage in milk. Dairy Sci Abstr 25(8):312–318

    Google Scholar 

  • Fetterman JC (1928) The electrical conductivity method of processing milk. Agric Eng 9:107–108

    Google Scholar 

  • Flaumenbaum BL (1941) Extracting of juice from raw plant material. PhD Thesis (candidate of technical sciences), Affiliated branch of All-Union Scientific Research Institute of the Canning Industry (VNIIKP) , Odessa, Ukraine (in Russian)

    Google Scholar 

  • Flaumenbaum B (1949) Electrical treatment of fruits and vegetables before extraction of juice. Proc Odessa Technol Inst Cann Ind (Trudy OTIKP, Odess Tehnol Instituta Konservn Promyshlennosti) 3:15–20. (in Russian)

    Google Scholar 

  • Flaumenbaum BL (1953) Commercial application of the method of electrical pre-processing fruits before pressing. Proc Odessa Technol Inst Food Refrig Ind (Trudy OTIPHP Odess Tehnol Instituta Pishhevoj i Holodil’noj Promyshlennosti) 5(2):37–50. (in Russian)

    Google Scholar 

  • Flaumenbaum BL (1968) Anwendung der Elektroplasmolyse bei der Herstellung von Fruchtsaften. Fluss Obs 35:19–22

    Google Scholar 

  • Flaumenbaum BL (1969) Problems of intensification of technological processes of preservation of food products. Thesis for degree of doctor science habilitat (technical sciences). Odessa Technological Institute of the Food Industry (OTIPP), Odessa, Ukraine (in Russian)

    Google Scholar 

  • Flaumenbaum BLI, Al-Saadi C (1966) Elektroplazmoliz Pri polucemi Tsitrusovih Sokov. Konservn i ovoshhesushil’naja promyshlennost’ 7:7

    Google Scholar 

  • Flaumenbaum BL, Kazandzhii (1966) Electrostability of different fruits and berries. Izv vuzov Pischevaya Technol 5:76–78. (in Russian)

    Google Scholar 

  • Flaumenbaum BL, Yablochnik LM (1949) Electroplasmolizator for the treatment of vegetables and fruits. Patent SU 83502 (in Russian). N 392599:1–3

    Google Scholar 

  • Fronek D (2012) Professor Jaroslav Dedek-great scientist and analyst in the field of sugar making. List Cukrov a Repar 128:34

    Google Scholar 

  • Fruengel F (1960) Method and device for electrically sterilizing and cleaning milking machines or the like. Patent US 2931947

    Google Scholar 

  • Funk RHW, Monsees T, Özkucur N (2009) Electromagnetic effects--from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  PubMed  CAS  Google Scholar 

  • Galvani A (1791) De viribus electricitatis in motu musculari. Commentarius. (On the strength of electricity in the muscular movement. Diary). Ex Typographia Instituti Scientiarum Cum Affrobatione, Bononia

    Google Scholar 

  • Gelpi AJ Jr, Devereux ED (1930) Effect of the electropure process and of the holding method of treating milk upon bacterial endospores. J Dairy Sci 13:368–371

    Article  Google Scholar 

  • Getchell BE (1935) Electric pasteurization of milk. Agric Eng 16:408–410

    Google Scholar 

  • Gilliland SE, Speck ML (1967a) Inactivation of microorganisms by electrohydraulic shock. Appl Environ Microbiol 15:1031–1037

    Article  CAS  Google Scholar 

  • Gilliland SE, Speck ML (1967b) Mechanism of the bactericidal action produced by electrohydraulic shock. Appl Environ Microbiol 15:1038–1044

    Article  CAS  Google Scholar 

  • Giri KV, Subrahmanyan V (2013) Studies in electro-culture. Part II. Influence of electrical treatment on the germination of barley and the diastatic activity of malt. J Indian Inst Sci 14:78

    Google Scholar 

  • Giri KV, Mirchandani TJ, Subrahmanyan V (2013) Studies in electro-culture. Part I J Indian Inst Sci 14:67

    Google Scholar 

  • Gossling BS (1960) Artificial mutation of micro-organisms by electrical shock. Patent US 2955076

    Google Scholar 

  • Grudinovker GL (1953) Electroplazmolizator for processing beets and other vegetables. Patent SU 3544/446640 (in Russian). Invent. Certif. (Patent SU) N 3544/446640:1–2

    Google Scholar 

  • Gulyi IS, Lebovka NI, Mank VV, et al (1994) Scientific and practical principles of electrical treatment of food products and materials. UkrINTEI (in Russian), Kiev

    Google Scholar 

  • Gutbrod SR, Efimov IR (2013) Two centuries of resuscitation. J Am Coll Cardiol 62(22):2110–2111

    Article  PubMed  Google Scholar 

  • Hall CW, Trout GM (1968) Milk pasteurization. Avi Publishing Company, Inc, Westport/Connecticut

    Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta (BBA)-General Subj 148:789–800

    Article  CAS  Google Scholar 

  • Heller R (1897) Beitrag zur Kenntniss der Wirkung elektrischer Ströme auf Mikroorganismen. Plant Syst Evol 47:326–331

    Article  Google Scholar 

  • Holland RV, Board PW, Richardson KC (1972) Sterilization by electrohydraulic discharges. Biotechnol Bioeng 14:459–472

    Article  CAS  PubMed  Google Scholar 

  • Hull GS (1898) Electro-horticulture. The Knickerbocker Press, New York

    Book  Google Scholar 

  • Hülsheger H, Niemann E-G (1980) Lethal effects of high-voltage pulses on E. coli K12. Radiat Environ Biophys 18:281–288

    Article  PubMed  Google Scholar 

  • Hülsheger H, Potel J, Niemann E-G (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    Article  PubMed  Google Scholar 

  • Hülsheger H, Potel J, Niemann E-G (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22:149–162

    Article  PubMed  Google Scholar 

  • Ingram M, Page LJ (1953) The survival of microbes in modulated high-frequency voltage fields. Proc Soc Appl Bacteriol 16:69–87

    Google Scholar 

  • ISEBTT (2016) International society for electroporation-based technologies and treatments. http://www.electroporation.net

  • Ivorra A, Rubinsky B (2010) Historical review of irreversible electroporation in medicine. In: Rubinsky B (ed) Irreversible electroporation. Springer, Berlin/Heidelberg, pp 1–21

    Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    Article  CAS  PubMed  Google Scholar 

  • Jallabert J (1748) Experiences sur l’électricité, avec quelques conjectures sur la cause de ses effets. Durand et Pissot, Paris

    Google Scholar 

  • Jennings HS (1900) Studies on reactions to stimuli in unicellular organisms. On the movements and motor reflexes of the flagellata and ciliata. Am J Physiol Content 3:229–260

    Article  CAS  Google Scholar 

  • Jones GS, Grooker WW, Artgs P (1886) Applying electricity for destroying living.organisms inthb bodies 0p slaughtered animals. Patent US 337334

    Google Scholar 

  • Kaiser W (1977) Johann Gottlieb Krüger (1715-1759) and Christian Gottlieb Kratzenstein (1723-1795) as originators of modern electrotherapy. Zahn Mund Kieferheilkd Zentralbl 65:539–554

    PubMed  Google Scholar 

  • Kazandzhii MY (1966) Investigation of parameters of electroplasmolysis process for fruits and berries in the production of fruit juices. PhD Thesis (Candidate of technical sciences), Odessa Technological Institute of Food and Refrigeration Industry, Odessa, Ukraine (in Russian)

    Google Scholar 

  • Kazandzhii M, Flaumenbaum BL (1977) Calculation of the parameters of electroplasmolysis. Proc High Educ Institutions Food Technol (Izvestiia Vyss uchebnykh Zaved Pishchevaia tekhnologiia) N1:162–163

    Google Scholar 

  • Kinosita K Jr, Tsong TY (1977a) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta Biomembr 471:227–242

    Article  CAS  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977b) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438

    Article  PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta Biomembr 554:479–497

    Article  CAS  Google Scholar 

  • Kinosita K, Tsong TT (1977) Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci 74:1923–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kite C (1788) An essay on the recovery of the apparently dead. Printed for C. Dilly in the Poultry, London

    Google Scholar 

  • Kleiber M (1924) Über die elektrische Konservierung von saftigem Futter (Elektrosilierung). PhD Thesis, ETH Zurich

    Google Scholar 

  • Knorr D, Geulen M, Grahl T, Sitzmann W (1994a) Energy cost of high electric field pulse treatment: reply. Trends Food Sci Technol 5:265

    Article  Google Scholar 

  • Knorr D, Geulen M, Grahl T, Sitzmann W (1994b) Food application of high electric field pulses. Trends Food Sci Technol 5:71–75

    Article  CAS  Google Scholar 

  • Kogan FY (1956) Electroplasmolyzer for plant raw material. Patent SU 104718 (in Russian). Pat. SU, Bull. Invent. Discov. (Bjulleten’ Izobret. i otkrytij) N5 N 104718:1–3

    Google Scholar 

  • Kogan FY (1968) Electrophysical methods in canning technologies of foodstuff. Tekhnica (in Russian), Kiev

    Google Scholar 

  • Krause G (1973) Electrical sterilisation of water – and aqueous dispersions or solutions or water-permeated solids. Patent DE 2336085A1

    Google Scholar 

  • Krueger AP, Strubbe AE, Yost MG, Reed EJ (1978) Electric fields, small air ions and biological effects. Int J Biometeorol 22:202–212

    Article  Google Scholar 

  • Krüger S (1893) Über den Einfluss des constanten elektrischen Stromes auf Wachsthum und Virulenz der Bakterien. Zeitschrift Klin Medizine 22:191

    Google Scholar 

  • Kupchik MP, Fischuk NU, Mihaylik TA et al (1982) Extraction of juice from raw plant material in an electric field. Elektron Obrab Mater N 4(106):81–83

    Google Scholar 

  • Lazarenko BR, Fursov SP, Shheglov JA et al (1977) Electroplasmolysis. Cartea Moldoveneascu, Chisinau

    Google Scholar 

  • Leicester J (1892a) Action of electric currents upon the growth of seeds. Chem News 66:199

    Google Scholar 

  • Leicester J (1892b) The action of electric currents upon the growth of seeds and plants. Chem News 65:63

    Google Scholar 

  • Lelieveld HLM, Notermans S, De Haan SWH (eds) (2007) Food preservation by pulsed electric fields: from research to application. Woodhead Publishing Limited\CRC Press LLC, Cambridge\Boca Raton

    Google Scholar 

  • Lemström S (1904) Electricity in agriculture and horticulture. The Electrician” Printing & Publishing Company, Ltd., London; New York, The D. Van Nostrand Co

    Book  Google Scholar 

  • Lewis FC (1914) An electro-chemical apparatus for the disinfection and cleansing of cultures and slides for use in bacteriological and pathological laboratories. Epidemiol Infect 14:48–51

    CAS  Google Scholar 

  • Lewis MJ, Neil JH (eds) (2000) Continuous thermal processing of foods: pasteurization and UHT sterilization, Food engineering series. Blackwell Publishing, Malden

    Google Scholar 

  • Lomonosov M (1961) A word about the phenomena from electric power origin offered from Mikhail Lomonosov, may – October 1753. In: Topchiev LB (ed) Mikhail Lomonosov, selected works in chemistry and physics. Publishing House of the Academy of Sciences of the USSR, pp 413–447

    Google Scholar 

  • Ludloff K (1895) Untersuchungen über den Galvanotropismus. Pflügers Arch Eur J Physiol 59:525–554

    Article  Google Scholar 

  • Lukiewicz S (1962) Polar action of electric fields on living organisms I. General considerations and historical review. Fol Biol 10:5–35

    CAS  Google Scholar 

  • Lund EJ, Rosene HF (1947) Bioelectric fields and growth. University of Texas, Austin

    Book  Google Scholar 

  • Lynch S (2016) Pulsed electric fields (PEF). Technology, role in food science and emerging applications. Nova Science Publishers, Inc., Suite N Hauppauge, NY, USA

    Google Scholar 

  • Macdonald AJR (1993) A brief review of the history of electrotherapy and its union with acupuncture. Acupunct Med 11:66–75

    Article  Google Scholar 

  • Mathews AP (1904) The nature of chemical and electrical stimulation. The physiological action of an ion depends upon its electrical state and its electrical stability. Am J Physiol Content 11:455–496

    Article  CAS  Google Scholar 

  • Matvienko AB (1996) Intensification of the extraction process of soluble substances by electrical treatment of aqueous media and vegetable raw materials. Thesis for degree of doctor science habilitat (Technical sciences). Kiev Technological Institute of Food Industry, Kiev, Ukraine (in Russian)

    Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  PubMed  Google Scholar 

  • Merton A (1968) Electrohydraulic process. Patent US 3366564

    Google Scholar 

  • Miklavčič D (ed) (2017) Handbook of electroporation. Springer International Publishing AG, Cham

    Google Scholar 

  • Mil’kov MY, Zagorul’ko AY (1949) Method of obtaining and purification of sugar beet raw juice and electroplasmolizator for implementing method. Patent SU 89009 (in Russian)

    Google Scholar 

  • Mil’kov MY, Zagorul’ko AY (1950) Method of electroplasmolysis of sugarbeet and similar slices and electroplasmolyzer for implementing the method. Patent SU 92191 (in Russian)

    Google Scholar 

  • Morren J, Roodenburg B, de Haan SWH (2003) Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov Food Sci Emerg Technol 4:285–295

    Article  CAS  Google Scholar 

  • Moses BD (1938) Electric pasteurization of milk. Agric Eng 19:525–526

    Google Scholar 

  • Nelson SO (1973) Electrical properties of agricultural products–a critical review. Trans ASAE 16:384–400

    Article  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Newman JE (1911) Electricity as applied to agriculture. Electrician 66:915

    Google Scholar 

  • Nollet J-A (1746) Essai sur l’électricité des corps. Freres Guérin, Paris

    Google Scholar 

  • Nollet JA (1749) Recherches sur les causes particulieres des phénoménes électriques et sur les effets nuibles ou avantageux qu’on peut en attendre. Chez les freres Guerin, Paris

    Google Scholar 

  • Nollet JA (1765) Leçons de physique expérimentale. Hippolyte Louis Guerin, Paris

    Google Scholar 

  • Nyrop JE (1946) A specific effect of high-frequency electric currents on biological objects. Nature 157:51

    Article  CAS  PubMed  Google Scholar 

  • Olsson E (1910) Insecticide. US Pat N 963932:1

    Google Scholar 

  • Oneill HG (1895) Cooking and heating apparatus. Patent US 535072

    Google Scholar 

  • Pados I (1967) Method and apparatus for treatment of liquid substances, especially of solutions by electric fields. Patent CH 495772A

    Google Scholar 

  • Pakhomov AG, Miklavčič D, Markov MS (2010) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton

    Book  Google Scholar 

  • Palaniappan S (1991) Ohmic heating of foods: studies on microbicidal effect of electricity, electrical conductivity of foods, and heat transfer in liquid-particle mixtures. PhD Thesis, The Ohio State University

    Google Scholar 

  • Palaniappan S, Sastry SK, Richter ER (1990) Effects of electricity on microorganisms: a review. J Food Process Preserv 14:393–414

    Article  Google Scholar 

  • Pareilleux A, Sicard N (1970) Lethal effects of electric current on Escherichia coli. Appl Environ Microbiol 19:421–424

    Article  CAS  Google Scholar 

  • Parent A (2005) Duchenne De Boulogne: a pioneer in neurology and medical photography. Can J Neurol Sci 32:369–377

    Article  PubMed  Google Scholar 

  • Patwardhan MS, Gandhare WZ (2013) High voltage electric field effects on the germination rate of tomato seeds. Acta Agrophysica 20:403–413

    Google Scholar 

  • Payne JF (1885) Birch, John (1745–1815). In: Dictionary of national biography. Smith, Elder & Co., London, UK

    Google Scholar 

  • Pearl R (1900) Studies on electrotaxis. I. On the reactions of certain Infusoria to the electric current. Am J Physiol Content 4:96–123

    Article  Google Scholar 

  • Pietruszewski S (2011) Electromagnetic fields, impact on seed germination and plant growth. In: encyclopedia of agrophysics. Springer, Dordrecht, Germany, pp 267–269

    Google Scholar 

  • Prescott SC (1927) The treatment of milk by an electrical method. Am J Public Health 17:221–223

    Article  CAS  Google Scholar 

  • Priestley JH (1907) The effect of electricity upon plants. Proc Bristol Nat Soc Ser 4 1(3):192–203

    Google Scholar 

  • Prochownick L, Spaeth F (1890) Ueber die keimtödtende wirkung des galvanischen stromes. DMW-Deutsche Medizinische Wochenschrift 16:564–565

    Article  Google Scholar 

  • RAF (1893) Electrical cooking. Science (80- ) 554:146–148

    Google Scholar 

  • Raso J, Heinz V (eds) (2006) Pulsed electric fields technology for the food industry: fundamentals and applications. Springer, New York

    Google Scholar 

  • Reitler W (1990) Conductive heating of foods. PhD Thesis, Technical University of Munich, Germany

    Google Scholar 

  • Riemann F, Zimmermann U, Pilwat G (1975) Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochim Biophys Acta Biomembr 394:449–462

    Article  CAS  Google Scholar 

  • Rifna EJ, Ramanan KR, Mahendran R (2019) Emerging technology applications for improving seed germination. Trends Food Sci Technol 86:95–108

    Article  CAS  Google Scholar 

  • Roeske H (1893) Method of and apparatus for purifying water. Patent US 501732

    Google Scholar 

  • Rogov IA (1988) Electrophysical methods of foods product processing. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Rogov IA, Gorbatov AV (1974) Physical methods of treatment of foods. Pishhevaja promyshlennost’, Moscow (in Russian)

    Google Scholar 

  • Ross W (1844) Galvanic experiments on vegetation. USPatent Off Rep 27:370–373

    Google Scholar 

  • Roux W (1892) Uber die morphologische polarisation von Eiern und Embryonen durch den electrischen Strom etc (about the morphological polarization of eggs and embryos by the electric current etc). Sitzungsberichte der Kais Akad der Wissenschaften Math-naturw Klasse Abt 101:227–228

    Google Scholar 

  • Rozhdestvenskiy IM (1954) Electroplasmolyzer for raw plant material. Patent SU 704/449389 (in Russian). Pat. SU, Bull. Invent. Discov. (Bjulleten’ Izobret. i otkrytij) N 704/449389:1–3

    Google Scholar 

  • Sale A, Hamilton W (1967) Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim Biophys Acta 148:781–788

    Article  Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta Biomembr 163:37–43

    Article  CAS  Google Scholar 

  • Sastry S (2008) Ohmic heating and moderate electric field processing. Food Sci Technol Int 14:419–422

    Article  Google Scholar 

  • Sater LE (1935) Passing an alternating electric current through food and fruit juices. Res Bull (Iowa Agric Home Econ Exp Station N) 181:275–312

    Google Scholar 

  • Schiffer MB (2006) Draw the lightning down: Benjamin Franklin and electrical technology in the age of enlightenment. University of California Press, Oakland, CA, USA

    Google Scholar 

  • Schwerin B (1901) Process of extracting sugar. Patent US 687386

    Google Scholar 

  • Schwerin B (1903) Electro-endosmotic process of extracting sugar. Patent US 723928

    Google Scholar 

  • Shengeliia AS (1974) A study of diffusion method of obtaining of the fruit juices. PhD Thesis (Candidate of technical sciences), Odessa Technological Institute of the Food Industry (OTIPP), Odessa, Ukraine (in Russian)

    Google Scholar 

  • Shimada K, Shimahara K (1977) Effect of alternating current on growth lag in Escherichia coli B. J Gen Appl Microbiol 23:127–136

    Article  Google Scholar 

  • Shulika VA (1988) Impact of electrical treatment of beet slices on the process of sucrose extraction. PhD Thesis (Candidate of technical sciences), Kiev Technological Institute of Food Industry, Kiev, Ukraine (in Russian)

    Google Scholar 

  • Sidaway GH (1975) Some early experiments in electro-culture. J Electrost 1:389–393

    Article  Google Scholar 

  • Singh MP, Hermodsson S, Edebo L (1969) Virucidal effect of transient electric arcs in aqueous systems. Appl Environ Microbiol 17:54–58

    Article  CAS  Google Scholar 

  • Sitzmann W (1995) High-voltage pulse techniques for food preservation. In: Gould GW (ed) New methods of food preservation. Springer, Dordrecht, pp 236–252

    Chapter  Google Scholar 

  • Sitzmann W, Münch EW (1989) Elektrische Verfahren zur Keimabtötung. Ernährungs Ind 6:54–58

    Google Scholar 

  • Sitzmann W, Vorobiev E, Lebovka N (2016) Applications of electricity and specifically pulsed electric fields in food processing: historical backgrounds. Innov Food Sci Emerg Technol 37:302–311

    Article  Google Scholar 

  • Solly E (1845) The influence of electricity on vegetation. J Hortic Soc London 1:81–109

    Google Scholar 

  • Songnuan W, Kirawanich P (2011) High intensity nanosecond pulsed electric field effects on early physiological development in Arabidopsis thaliana. Sci Res Exp Dev 77:208–212

    Google Scholar 

  • Spechnew N (1889) L’Application de l’electricite a l’agriculture. La Lumiere Electr 51:558–562

    Google Scholar 

  • Spilker W, Gottstein A (1891) Ueber die Vernichtung von Mikroorganismen durch die Induktionselektricitat (on the destruction of microorganisms by induction electricite). Bakteri Parasitenk 9:77–88

    Google Scholar 

  • Stämpfli R (1958) Reversible electrical breakdown of the excitable membrane of a Ranvier node. An da Acad Bras Ciências (Annals Brazilian Acad Sci) 30:57–63

    Google Scholar 

  • Stiebel HGJ (1896) Water sterilizing apparatus. Patent US 664657

    Google Scholar 

  • Stirling R (1987) Ohmic heating-a new process for the food industry. Power Eng J 1:365–371

    Article  Google Scholar 

  • Stirling R, Bettelheim KA (1974) Disinfection by electrohydraulic discharges. J Appl Chem Biotechnol 24:529–538

    Article  Google Scholar 

  • Stone GE (1904) The influence of current electricity on plant growth. Annu Rep Hatch Exp Stn Massachusetts Agric Coll 16:13–31

    Google Scholar 

  • Stone GE (1909) Influence of electricity on micro-organisms. Bot Gaz 48:359–379

    Article  Google Scholar 

  • Sytnik IA (1982) Electro-hydraulic action on microorganisms. Health, Kiev (in Russian)

    Google Scholar 

  • Takaki K, Kanesawa K, Yamazaki N, Mukaigawa S, Fujiwara T, Takahasi K, Yamasita K, Nagane K (2007) Application of IES pulsed power generator for mushroom cultivation. In: 2007 16th IEEE international pulsed power conference. Albuquerque, NM, USA, pp 1253–1256

    Google Scholar 

  • Thiele H, Wolf K (1899) Über die Einwirkung des elektrischen Stromes auf Bakterien. Zentralblatt Bakterien und Parasitenkd 25:650–655

    Google Scholar 

  • Thornton WM (1912) The electrical conductivity of bacteria, and the rate of sterilisation of bacteria by electric currents. Proc R Soc London Ser B, Contain Pap a Biol Character 85:331–344

    Google Scholar 

  • Tracy RL Jr (1932) Lethal effect of alternating current on yeast cells. J Bacteriol 24:423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto S, Maeda T, Ikeda M, Akiyama H (2003) Application of pulsed power to mushroom culturing. In: Digest of Technical Papers. PPC-2003. 14th IEEE international pulsed power conference (IEEE Cat. No. 03CH37472), pp 1116–1119

    Google Scholar 

  • Vanable JW Jr (1991) A history of bioelectricity in development and regeneration. In: Dinsmoren CE (ed) A history of regeneration research. Cambridge University Press, Cambridge, pp 151–177

    Google Scholar 

  • Vishnevetsky II (1979) Unit for water disinfection with electric discharges. Patent SU861332A1 (in Russian)

    Google Scholar 

  • Völker A (1993) 250 years ago: the origin of electrotherapy exemplified by Halle. Z Gesamte Inn Med 48:251–258

    PubMed  Google Scholar 

  • Vorobiev EI, Lebovka NI (eds) (2008) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York

    Google Scholar 

  • Wang S-M (2019) Electrotherapy-an old technique for a new use. In: Translational acupuncture research. Springer Nature, Switzerland AG, pp 407–419

    Google Scholar 

  • WC2015_Electroporation (2015) The 1st world congress on electroporation and pulsed electric fields in biology, medicine and food & environmental technologies, Portoroz, Slovenia, September 6–10, 2015. https://wc2015.electroporation.net

  • WC2017_Electroporation (2019) The 2nd world congress on electroporation and pulsed electric fields in biology, medicine, and food & environmental technologies, Norfolk, Virginia, USA, September 24–27, 2017. https://wc2017.electroporation.net/

  • WC2019_Electroporation (2019) The 3rd world congress on electroporation and pulsed electric fields in biology, medicine, and food & environmental technologies, Toulouse, France, September 3–6, 2019. https://wc2019.electroporation.net/

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Wesley RH, Williams GT (1970) Bacteria destruction methods. US3594115

    Google Scholar 

  • Yutkin LA (1986) Electrohydraulic effect and its industrial application. Mashinostroenie, Leningrad

    Google Scholar 

  • Zago S, Priori A, Ferrucci R, Lorusso L (2016) Historical aspects of transcranial electric stimulation. In: Transcranial direct current stimulation in neuropsychiatric disorders. Springer International Publishing, Switzerland, pp 3–19

    Google Scholar 

  • Zagorul’ko AY (1957) Impact of thermal plasmolysis and selective electroplasmolysis on the structure of the plasma cell membrane and permeability of beet tissues. Sugar Ind N 11:67–71. (in Russian)

    Google Scholar 

  • Zagorul’ko AJ (1958a) Technological parameters of beet desugaring process by the selective electroplosmolysis. In: New physical methods of foods processing. Moscow, Izdatelstvo GosINTI, pp 21–27. (in Russian)

    Google Scholar 

  • Zagorul’ko AY (1958b) Obtaining of the diffusion juice with the help of electroplasmolysis. PhD Thesis (Candidate of technical sciences), All-USSR Central Research Institute of Sugar Industry, Kiev, Ukraine (in Russian)

    Google Scholar 

  • Zagorul’ko AY, Myl’kov MN (1953) Production of juice at low temperature using electroplasmolysis. Sugar Ind (in Russ N 10:15–18 (in Russian)

    Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann U, Pilwat G, Beckers F, Riemann F (1976a) Effects of external electrical fields on cell membranes. Bioelectrochem Bioenerg 3:58–83

    Article  CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Holzapfel C, Rosenheck K (1976b) Electrical hemolysis of human and bovine red blood cells. J Membr Biol 30:135–152

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Riemann F, Pilwat G (1976c) Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown. Biochim Biophys Acta (BBA)-Biomembranes 436:460–474

    Article  CAS  Google Scholar 

  • Zimmermann U, Vienken J, Scheurich P (1980) Electric field induced fusion of biological cells. Eur Biophys J 6:86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N. (2020). Historical Background of Processing of Foods and Biomass Feedstock’s by Electricity and Pulsed Electric Energy. In: Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-40917-3_1

Download citation

Publish with us

Policies and ethics