Skip to main content

Biofilm: An Innovative Modern Technology for Aquatic Pollution Remediation

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 2

Abstract

In the present era of growing population, increased use of water has resulted in the deterioration of quality of water bodies. Increase in pollution may add to the global water stress. Therefore, the need of the time is to clean water bodies by using sustainable and innovative technologies. Biofilm based technologies are of tremendous potential in cleaning and remediating water pollutants. Recently new techniques such as use of filamentous bamboo-based biofilms in the biofilm reactors and use of exopolysaccharides of biofilms for the pollution remediation have gained much importance. Biofilms developed on different substrates with diverse groups of microbes can be harnessed to remediate heavy metals, toxic chemicals, pollutants from pharmaceutical and personal care products, synthetic dyes, organic pollutants, hydrocarbons, and polychlorinated compounds. Periphytic biofilms also play an important role in denitrification process and therefore could be used to remove excess nitrogen from polluted water bodies. In this chapter we have focused on the potential role of innovative biofilm technologies to remediate aquatic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Accinelli C, Sacca ML, Mencarelli M, Vicari A (2012) Application of bioplastic moving bed biofilm carriers for the removal of synthetic pollutants from wastewater. Bioresour Technol 120:180–186

    Article  CAS  PubMed  Google Scholar 

  • Al-Awadhi H, Al-Hasan RH, Sorkhoh NA, Salamah S, Radwan SS (2003) Establishing oil-degrading biofilms on gravel particles and glass plates. Int Biodeteriorat Biodeg 51(3):181–185

    Article  CAS  Google Scholar 

  • Alluri HK, Ronda SR, Settalluri VS, Bondili JS, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6:2924–2931

    Article  CAS  Google Scholar 

  • Bakir A, O’Connor IA, Rowland SJ, Hendriks AJ, Thompson RC (2016) Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ Pollut 219:56–65

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. PNAS 101:16630–16635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandy T, Alain M, Matthew AM, Dylan BM, Garrison S (2005) Zinc sorption by a bacterial biofilm. Environ Sci Technol 39:8288–8294

    Article  CAS  Google Scholar 

  • Burek P, Satoh Y, Fischer G, Kahil MT, Scherzer A, Tramberend S, Nava LF, Wada Y (2016) Water futures and solution- fast track initiative (Final Report). IIASA, Laxenburg. WP-16-006

    Google Scholar 

  • Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA (2009) Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-P-dioxins. Environ Toxicol Chem 28:2555–2563

    Article  CAS  PubMed  Google Scholar 

  • Caldera M (1999) 4-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor. Appl Microbiol Biotechnol 52:722–729

    Article  Google Scholar 

  • Cao W, Zhang H, Wang Y, Pan J (2012) Bioremediation of polluted surface water by using biofilms on filamentous bamboo. Ecol Eng 42:146–149

    Article  Google Scholar 

  • Chandran P, Das N (2011) Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels. Biodegradation 22:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Tseng SK, Chang CC, Ho CM (2004) Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions. Chemosphere 56:989–997

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Suwarno SR, Chong TH, McDougald D, Kjelleberg S, Cohen Y, Fane AG, Rice SA (2013) Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. Biofouling 29:319–330

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Geesev GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  • Costley SC, Wallis FM (2001) Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723

    Article  CAS  PubMed  Google Scholar 

  • Cristina Q, Zelia R, Bruna S, Bruna F, Hugo F (2009a) Biosorptive performance of an Escherichia coli biofilm supported on zeolite naY for the removal of Cr(VI), Cd(II), Fe(III), and Ni(II). Chem Eng J 152:110–115

    Article  CAS  Google Scholar 

  • Cristina Q, Zelia R, Bruna S, Bruna F, Hugo F (2009b) Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem Eng J 149:319–324

    Article  CAS  Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Das N, Lakshmi V, Basak G, Salam JA, EvyAlice AM (2012) Application of biofilms on remediation of pollutants – an overview. J Microbiol Biotech Res 2(5):783–790

    CAS  Google Scholar 

  • DePhilippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    Article  CAS  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921. https://doi.org/10.1007/s00253-013-5216-z

    Article  CAS  PubMed  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  PubMed  Google Scholar 

  • Galiana E, Fourre S, Engler G (2008) Phytophthora parasitica biofilm formation: installation and organization of microcolonies on the surface of a host plant. Environ Microbiol 10:2164–2171

    Article  PubMed  Google Scholar 

  • Gianfreda L, Rao MA (2004) Laccases: a useful group of oxido-reductive enzymes. Enzyme MicrobTechnol 35:339–354

    Article  CAS  Google Scholar 

  • Gisi W, Hanselman KW, Stucki G, Gisi D (1997) Biodegradation of pesticide 4,6 – dinitro- ortho- cresol by microorganisms in batch cultures and in fixed bed column reactor. Appl Microbiol Biotechnol 48:441–448

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a Review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Bishop PL (1994) Aerobic biodegradation of azo dyes in biofilms. Water Sci Technol 29(10–11):525–530

    Article  CAS  Google Scholar 

  • Josephine A, Joseph A, Susan MG (2006) Biodegradation of polychlorinated biphenyls by activated sludge obtained from secondary sledge wastewater. AJChE 6(2006):44–52

    Google Scholar 

  • Kantawanichkul S, Kladprasert S, Brix H (2009) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35(2):238–247

    Article  Google Scholar 

  • Kargi F, Eker S (2005) Removal of 2, 4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40:2105–2111

    Article  CAS  Google Scholar 

  • Latch DE, Packer JL, Arnold WA, McNeill K (2003) Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J Photochem Photobiol A Chem 158:63–66

    Article  CAS  Google Scholar 

  • Lau T, Wu X, Chua H, Qian P, Wong P (2005) Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Sci Technol 52:63–68

    Article  CAS  Google Scholar 

  • Lendermann U, Spain JC (1998) Simultaneous biodegradation of 2,4-dinitrotoluene and 2,6-dinitrotoluene in an aerobic fludized bed biofilm reactor. Environ Sci Technol 32:82–87

    Article  Google Scholar 

  • Löffler FE, Ritalahti KM, Zinder SH (2013) Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF et al (eds) Bioaugmentation for groundwater remediation, vol 5. Springer, New York, pp 39–88

    Chapter  Google Scholar 

  • Marchal R, Briandet R, Koechler S, Kammerer B, Bertin PN (2010) Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology 156:2336–2342

    Article  CAS  PubMed  Google Scholar 

  • Marchal M, Briandet R, Halter D, Koechler S, DuBow MS, Lett MC, Bertin PN (2011) Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PLoS One 6:e23181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur G, Mathur A, Prasad R (2011) Colonization and degradation of thermally oxidized high-density polyethylene by Aspergillus niger (ITCC no. 6052) isolated from plastic waste dumpsite. Biorem J 15(2):69–76

    Article  CAS  Google Scholar 

  • Muller D, Simeonova DD, Riegel P, Mangenot S, Koechler S, Lièvremont D, Bertin PN, Lett MC (2006) Herminiimonasarsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56:1765–1769

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Médigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:e53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onesios KM, Bouwer EJ (2012) Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations. Water Res 46:2365–2375

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Paul A (2010) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  Google Scholar 

  • Puhakka J, Melin E, Järvinen K, Koro P, Rintala J, Hartikainen P, Shieh W, Ferguson J (1995) Fluidized-bed biofilms for chlorophenol mineralization. Water Sci Technol 31(1):227–235

    Article  CAS  Google Scholar 

  • Qian Y, Wen XH, Huang X (2007) Development and application of some renovated technologies for municipal wastewater bioremediation in China. Front Environ Sci Eng 1:1–2

    Article  Google Scholar 

  • Rabei MG, Gad Elrab SMF, Abskharon RNN, Hassan SHA, Shoreit AAM (2009) Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World J Microbiol Biotechnol 25:1695–1703. https://doi.org/10.1007/s11274-009-0063-x

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Hassan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. Aquat Microb Ecol 23:113–117

    Article  Google Scholar 

  • Rafida AI, Elyousfi MA, Al-Mabrok H (2011) Removal of hydrocarbon compounds by using a reactor of biofilm in an anaerobic medium. World Acad Sci Eng Technol 73:153–156

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  PubMed  Google Scholar 

  • Rodriguez S, Bishop P (2008) Enhancing the biodegradation of polycyclic aromatic hydrocarbons: effects of nonionic surfactant addition on biofilm function and structure. J Environ Eng 134:505–512

    Article  CAS  Google Scholar 

  • Scot JA, Karanjkar AM, Rowe DL (1995) Biofilm covered granular activated carbon for decontamination of streams containing heavy metals and organic chemicals. Miner Eng 8:221–230

    Article  Google Scholar 

  • Sehar S, Naz I (2016) Role of the biofilms in wastewater treatment. In: Microbial biofilms - importance and applications, vol 7. Intech Open Science, London, pp 139–144. https://doi.org/10.5772/63499

    Chapter  Google Scholar 

  • Seo Y, Lee WH, Sorial G, Bishop PL (2009) The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydro- carbon bioremediation. Environ Pollut 157:95–101

    Article  CAS  PubMed  Google Scholar 

  • Sui Q, Huang J, Deng S, ChenW YG (2011) Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environ Sci Technol 45:3341–3348

    Article  CAS  PubMed  Google Scholar 

  • Sundar K, Sadiq IM, Amitava M, Chandrasekaran N (2011) High chromium tolerant bacterial strains from Palar river basin. Hazard Mater 196:44–51

    Article  CAS  Google Scholar 

  • Suseela MR, Kiran T (2007) Algal biofilms on polythene and its possible degradation. Curr Sci 92:285–287

    Google Scholar 

  • Verhagen P, De Gelder L, Hoefman S, De Vos P, Boon N (2011) Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. Appl Environ Microbiol 77:4728–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Teng S, Fan M (2010) Interaction between heavy metals and aerobic granular sludge. In: Sarkar SK (ed) Environmental management. Sciyo, Rijeka, pp 173–188

    Google Scholar 

  • Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, Queck SY, Otto M (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Investig 121:238–248

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu XD, Lu J (2012) Urban river pollution control and remediation. Procedia Environ Sci 13:1856–1862

    Article  CAS  Google Scholar 

  • Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, Heydorn A, Koo H (2012) The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed- species oral biofilm. PLoS Pathog 8:e1002623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TC, Fu YC, Bishop PL (1995) Transport and biodegradation of toxic organics in biofilms. Hazard J Mater 41:267–285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, S.A. et al. (2020). Biofilm: An Innovative Modern Technology for Aquatic Pollution Remediation. In: Bhat, R., Hakeem, K., Dervash, M. (eds) Bioremediation and Biotechnology, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-40333-1_12

Download citation

Publish with us

Policies and ethics