Skip to main content

Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers

  • Chapter
  • First Online:
Biofibers and Biopolymers for Biocomposites

Abstract

In view of immense potential of sustainable and renewable biopolymers for future biorefineries, development of green and carbon economic methods for their processing are highly demanding. Despite of numerous protocols established so far, innovations leading to sustainable methods for integration of multi-step volarization of low value biopolymeric feedstock are still highly concerned. One of such innovations is the ionic liquids based biorefinery concept for various advanced biofuels, valuable chemicals and other bio-products. Superiority of ionic liquids is due to their green, non-degradative, non-toxic, nono-volatile and chemically and thermally stable profile for upgrading renewable biopolymers based biorefinery. Some processing applications of ionic liquids for biofuels and fine chemicals production are covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvira, P., Tomas-Pejo, E., Ballesteros, M. J., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology,101, 4851–4861.

    Article  CAS  Google Scholar 

  2. Moyer, P., Smith, M. D., Abdoulmoumine, N., Chmely, S. C., Smith, J. C., Petridis, L., et al. (2018). Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions. Physical Chemistry Chemical Physics,20, 2508–2516.

    Article  CAS  Google Scholar 

  3. Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress,22, 449–453.

    Article  CAS  Google Scholar 

  4. Brandt, A., Grasvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry,15, 550–583.

    Article  CAS  Google Scholar 

  5. Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy,30, 247–253.

    Article  CAS  Google Scholar 

  6. Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2008). Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Applied Biochemistry and Biotechnology,145, 99–110.

    Article  CAS  Google Scholar 

  7. O’sullivan, A.C. (1997). Cellulose: The structure slowly unravels. Cellulose, 4, 173–207.

    Article  CAS  Google Scholar 

  8. Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society,124, 9074–9082.

    Article  CAS  Google Scholar 

  9. Qian, X., Ding, S.-Y., Nimlos, M. R., Johnson, D. K., & Himmel, M. E. (2005). Atomic and electronic structures of molecular crystalline cellulose Iβ: a first-principles investigation. Macromolecules,38, 10580–10589.

    Article  CAS  Google Scholar 

  10. Jimenez de la Parra, C., Navarrete, A., Dolores Bermejo, M., & Jose Cocero, M. (2012). Patents review on lignocellulosic biomass processing using ionic liquids. Recent Patents on Engineering,6, 159–181.

    Article  CAS  Google Scholar 

  11. Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology,1, 45–70.

    Article  CAS  Google Scholar 

  12. Willfor, S., Sundberg, K., Tenkanen, M., & Holmbom, B. (2008). Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers,72, 197–210.

    Article  CAS  Google Scholar 

  13. Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., & Zacchi, G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels,3, 16.

    Article  CAS  Google Scholar 

  14. Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology,56, 1–24.

    Article  CAS  Google Scholar 

  15. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology,54, 519–546.

    Article  CAS  Google Scholar 

  16. El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability,94, 1632–1638.

    Article  CAS  Google Scholar 

  17. Klamt, A. (1995). Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry,99, 2224–2235.

    Article  CAS  Google Scholar 

  18. Spange, S., Keutel, D., & Simon, F. (1992). Approaches to empirical donor-acceptor and polarity-parameters of polymers in solution and at interfaces. Journal de Chimie Physique,89, 1615–1622.

    Article  CAS  Google Scholar 

  19. Ogura, K., Ninomiya, K., Takahashi, K., Ogino, C., & Kondo, A. (2014). Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. Biotechnology for Biofuels,7, 120.

    Article  CAS  Google Scholar 

  20. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society,124, 4974–4975.

    Article  CAS  Google Scholar 

  21. Fort, D. A., Remsing, R. C., Swatloski, R. P., Moyna, P., Moyna, G., & Rogers, R. D. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry,9, 63–69.

    Article  CAS  Google Scholar 

  22. Vitz, J., Erdmenger, T., Haensch, C., & Schubert, U. S. (2009). Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry,11, 417–424.

    Article  CAS  Google Scholar 

  23. Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry,10, 696–705.

    Article  CAS  Google Scholar 

  24. Khan, A. S., Nasrullah, A., Ullah, Z., Bhat, A. H., Ghanem, O. B., Muhammad, N., et al. (2018). Thermophysical properties and ecotoxicity of new nitrile functionalised protic ionic liquids. Journal of Molecular Liquids,249, 583–590.

    Article  CAS  Google Scholar 

  25. Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews,110, 3552–3599.

    Article  CAS  Google Scholar 

  26. Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and bioengineering,102, 1368–1376.

    Article  CAS  Google Scholar 

  27. Pu, Y., Jiang, N., & Ragauskas, A. J. (2007). Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology,27, 23–33.

    Article  CAS  Google Scholar 

  28. Ji, W., Ding, Z., Liu, J., Song, Q., Xia, X., Gao, H., et al. (2012). Mechanism of lignin dissolution and regeneration in ionic liquid. Energy & Fuels,26, 6393–6403.

    Article  CAS  Google Scholar 

  29. Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry,13, 2489–2499.

    Article  CAS  Google Scholar 

  30. Eminov, S., Filippousi, P., Brandt, A., Wilton-Ely, J. D., & Hallett, J. P. (2016). Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids. Inorganics,4, 32–47.

    Article  CAS  Google Scholar 

  31. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., et al. (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Washington DC: Department of Energy.

    Google Scholar 

  32. Tundo, P., Perosa, A., & Zecchini, F. (2007). Methods and reagents for green chemistry. Hoboken: Wiley.

    Google Scholar 

  33. Carole, T.M., Pellegrino, J., & Paster, M.D. (2004). Opportunities in the industrial biobased products industry. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 871–885) Breckenridge, CO: Springer.

    Google Scholar 

  34. Li, C., & Zhao, Z. K. (2007). Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis,349, 1847–1850.

    Article  CAS  Google Scholar 

  35. Zhao, H., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,316, 1597–1600.

    Article  CAS  Google Scholar 

  36. Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., & Mae, K. (2014). Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Industrial & Engineering Chemistry Research,53, 11611–11621.

    Article  CAS  Google Scholar 

  37. Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M.B., Agrawal, P.K., & Jones, C.W. (2009). Acid‐catalyzed conversion of sugars and furfurals in an ionic‐liquid phase. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 665–671.

    Google Scholar 

  38. Chen, T., Xiong, C., & Tao, Y. (2018). Enhanced hydrolysis of cellulose in ionic liquid using mesoporous ZSM-5. Molecules,23, 529–539.

    Article  CAS  Google Scholar 

  39. Bose, S., Armstrong, D. W., & Petrich, J. W. (2010). Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: A green approach toward the production of biofuels. The Journal of Physical Chemistry B,114, 8221–8227.

    Article  CAS  Google Scholar 

  40. de Oliveira, H. F. N., Fares, C., & Rinaldi, R. (2015). Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chemical Science,6, 5215–5224.

    Article  CAS  Google Scholar 

  41. Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental,174, 225–243.

    Article  CAS  Google Scholar 

  42. Qu, Y., Li, L., Wei, Q., Huang, C., Oleskowicz-Popiel, P., & Xu, J. (2016). One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Scientific Reports,6, 26067.

    Article  CAS  Google Scholar 

  43. Mukherjee, A., Dumont, M.-J., & Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy,72, 143–183.

    Article  CAS  Google Scholar 

  44. Wang, P., Yu, H., Zhan, S., & Wang, S. (2011). Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology,102, 4179–4183.

    Article  CAS  Google Scholar 

  45. Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2018). Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research,57, 4749–4766.

    Article  CAS  Google Scholar 

  46. Chatel, G., & Rogers, R. D. (2013). Oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustainable Chemistry & Engineering,2, 322–339.

    Article  CAS  Google Scholar 

  47. Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition,55, 8164–8215.

    Article  CAS  Google Scholar 

  48. Mainka, H., Tager, O., Korner, E., Hilfert, L., Busse, S., Edelmann, F. T., et al. (2015). Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology,4, 283–296.

    Article  CAS  Google Scholar 

  49. Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing,35, 395–400.

    Article  CAS  Google Scholar 

  50. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology,125, 198–209.

    Article  CAS  Google Scholar 

  51. Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D. (2007). Top value added chemicals from biomass: results of screening for potential candidate from sugars and synthesis gas, vol. 2. Pacific Northwest National Laboratory: US Department of Energy.

    Google Scholar 

  52. Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem,8, 24–51.

    Article  CAS  Google Scholar 

  53. Yan, N., Yuan, Y., Dykeman, R., Kou, Y., & Dyson, P. J. (2010). Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with bronsted acidic ionic liquids. Angewandte Chemie,122, 5681–5685.

    Article  Google Scholar 

  54. Liu, S., Shi, Z., Li, L., Yu, S., Xie, C., & Song, Z. (2013). Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances,3, 5789–5793.

    Article  CAS  Google Scholar 

  55. Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2016). Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry,18, 834–841.

    Article  CAS  Google Scholar 

  56. Scott, M., Deuss, P. J., de Vries, J. G., Prechtl, M. H., & Barta, K. (2016). New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology,6, 1882–1891.

    Article  CAS  Google Scholar 

  57. Wiermans, L., Schumacher, H., Klaaßen, C.-M., & de Maria, P. D. (2015). Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Advances,5, 4009–4018.

    Article  CAS  Google Scholar 

  58. Prado, R., Erdocia, X., De Gregorio, G. F., Labidi, J., & Welton, T. (2016). Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chemistry & Engineering,4, 5277–5288.

    Article  CAS  Google Scholar 

  59. Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chemistry,12, 1225–1236.

    Article  CAS  Google Scholar 

  60. Das, L., Xu, S., & Shi, J. (2017). Catalytic oxidation and depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research,5, 21.

    Article  Google Scholar 

  61. Stark, K., Taccardi, N., Bosmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem,3, 719–723.

    Article  CAS  Google Scholar 

  62. Liu, F., Liu, Q., Wang, A., & Zhang, T. (2016). Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustainable Chemistry & Engineering,4, 3850–3856.

    Article  CAS  Google Scholar 

  63. Lange, H., Decina, S., & Crestini, C. (2013). Oxidative upgrade of lignin–recent routes reviewed. European Polymer Journal,49, 1151–1173.

    Article  CAS  Google Scholar 

  64. Dier, T. K., Rauber, D., Durneata, D., Hempelmann, R., & Volmer, D. A. (2017). Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Scientific Reports,7, 5041.

    Article  CAS  Google Scholar 

  65. Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics,14, 5214–5221.

    Article  CAS  Google Scholar 

  66. Cox, B. J., & Ekerdt, J. G. (2012). Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology,118, 584–588.

    Article  CAS  Google Scholar 

  67. Thierry, M., Majira, A., Pegot, B., Cezard, L., Bourdreux, F., Clement, G., et al. (2018). Imidazolium-based Ionic Liquids as efficient reagents for the C−O bond cleavage of Lignin. Chemsuschem,11, 439–448.

    Article  CAS  Google Scholar 

  68. Diop, A., Jradi, K., Daneault, C., & Montplaisir, D. (2015). Kraft lignin depolymerization in an ionic liquid without a catalyst. BioResources,10, 4933–4946.

    Article  CAS  Google Scholar 

  69. Liu, C., Li, Y. M., & Hou, Y. (2018). Preparation and structural characterization of lignin micro/nano-particles with ionic liquid treatment by self-assembly. Express Polymer Letters,12, 946–956.

    Article  CAS  Google Scholar 

  70. Szalaty, T. J., Klapiszewski, L., Kurc, B., Skrzypczak, A., & Jesionowski, T. (2018). A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. Journal of Molecular Liquids,261, 456–467.

    Article  CAS  Google Scholar 

  71. Dutta, T., Sun, J., Simmons, B.A., & Singh, S. (2017). Conversion of lignin to ionic liquids.

    Google Scholar 

  72. Socha, A., Singh, S., Simmons, B.A., & Bergeron, M. (2014). Synthesis of novel ionic liquids from lignin-derived compounds.

    Google Scholar 

  73. Varanasi, P., Singh, P., Auer, M., Adams, P. D., Simmons, B. A., & Singh, S. (2013). Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels,6, 14.

    Article  CAS  Google Scholar 

  74. Socha, A. M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., et al. (2014). Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences,111, E3587–E3595.

    Article  CAS  Google Scholar 

  75. Jiang, N., Pu, Y., Samuel, R., & Ragauskas, A. J. (2009). Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chemistry,11, 1762–1766.

    Article  CAS  Google Scholar 

  76. Yelle, D. J., Ralph, J., & Frihart, C. R. (2008). Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magnetic Resonance in Chemistry,46, 508–517.

    Article  CAS  Google Scholar 

  77. Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., & Pauly, M. (2013). Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d 6/1-ethyl-3-methylimidazolium acetate solvent. Analytical Chemistry,85, 3213–3221.

    Article  CAS  Google Scholar 

  78. Zoia, L., King, A. W., & Argyropoulos, D. S. (2011). Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. Journal of Agricultural and Food Chemistry,59, 829–838.

    Article  CAS  Google Scholar 

  79. Engel, P., Hein, L., & Spiess, A. C. (2012). Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnology for Biofuels,5, 77.

    Article  CAS  Google Scholar 

  80. Cadoche, L., & Lopez, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes,30, 153–157.

    Article  CAS  Google Scholar 

  81. Miao, Z., Grift, T. E., Hansen, A. C., & Ting, K. C. (2011). Energy requirement for comminution of biomass in relation to particle physical properties. Industrial Crops and Products,33, 504–513.

    Article  CAS  Google Scholar 

  82. Sokhansanj, S., Kumar, A., & Turhollow, A. F. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy,30, 838–847.

    Article  Google Scholar 

  83. Brandt, A., Erickson, J. K., Hallett, J. P., Murphy, R. J., Potthast, A., Ray, M. J., et al. (2012). Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry,14, 1079–1085.

    Article  CAS  Google Scholar 

  84. King, A. W., Parviainen, A., Karhunen, P., Matikainen, J., Hauru, L. K., Sixta, H., et al. (2012). Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Advances,2, 8020–8026.

    Article  CAS  Google Scholar 

  85. Mazza, M., Catana, D.-A., Vaca-Garcia, C., & Cecutti, C. (2009). Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose,16, 207–215.

    Article  CAS  Google Scholar 

  86. Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels,6, 39.

    Article  CAS  Google Scholar 

  87. da Costa Lopes, A. M., & Lukasik, R. M. (2018). Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. Chemsuschem,11, 1099–1107.

    Article  CAS  Google Scholar 

  88. Amde, M., Liu, J.-F., & Pang, L. (2015). Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental Science & Technology,49, 12611–12627.

    Article  CAS  Google Scholar 

  89. Reid, J. E., Prydderch, H., Spulak, M., Shimizu, S., Walker, A. J., & Gathergood, N. (2018). Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures. Sustainable Chemistry and Pharmacy,7, 17–26.

    Article  Google Scholar 

  90. Egorova, K. S., & Ananikov, V. P. (2014). Toxicity of ionic liquids: Eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem,7, 336–360.

    Article  CAS  Google Scholar 

  91. Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Pereira, C. S. (2011). Ionic liquids: A pathway to environmental acceptability. Chemical Society Reviews,40, 1383–1403.

    Article  CAS  Google Scholar 

  92. Pham, T. P. T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research,44, 352–372.

    Article  CAS  Google Scholar 

  93. Oliveira, M.V., Vidal, B.T., Melo, C.M., de Miranda, R.D.C., Soares, C.M., Coutinho, J., et al. (2016). (Eco) toxicity and biodegradability of protic ionic liquids. Chemosphere, 147, 460–466.

    Article  CAS  Google Scholar 

  94. Grzonkowska, M., Sosnowska, A., Barycki, M., Rybinska, A., & Puzyn, T. (2016). How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere,159, 199–207.

    Article  CAS  Google Scholar 

  95. Biczak, R., Pawlowska, B., Balczewski, P., & Rychter, P. (2014). The role of the anion in the toxicity of imidazolium ionic liquids. Journal of Hazardous Materials,274, 181–190.

    Article  CAS  Google Scholar 

  96. Peric, B., Sierra, J., Marti, E., Cruanas, R., Garau, M. A., Arning, J., et al. (2013). (Eco) toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials,261, 99–105.

    Article  CAS  Google Scholar 

  97. Wiredu, B., & Amarasekara, A. S. (2014). Synthesis of a silica-immobilized Bronsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catalysis Communications,48, 41–44.

    Article  CAS  Google Scholar 

  98. Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maliha Uroos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naz, S., Uroos, M. (2020). Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers. In: Khan, A., Mavinkere Rangappa, S., Siengchin, S., Asiri, A. (eds) Biofibers and Biopolymers for Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-40301-0_9

Download citation

Publish with us

Policies and ethics