Skip to main content

Burns

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

Severe burn injury continues to represent a significant public health problem worldwide. More than one million burn injuries occur annually in the USA. Major burn injury is characterized by oxidative stress, a prolonged hypermetabolic and catabolic state, and immunosuppression. The systemic response to major burn injury is driven by a cascade of cytokines, catecholamines, and corticosteroids that are central to the hypermetabolic response. Resultantly, burn patients have increased cardiac work, increased myocardial oxygen consumption, tachycardia, lipolysis, liver dysfunction, severe muscle catabolism, increased protein degradation, and insulin resistance, and growth retardation has been seen in children. The innate response to significant burn injury increases metabolism to such a profound degree that severely burn-injured patients would succumb to the effects of protein calorie malnutrition without nutritional supplementation. This postburn hypermetabolism is associated with profound proteolysis resulting in lean body mass loss and muscle wasting.

Thus, providing the right balance of macro- and micronutrients and antioxidants is essential to mitigate the hypermetabolic and hypercatabolic state that results. International nutrition support guidelines advocate that enteral feedings should begin early in critically ill patients who have a functioning gastrointestinal tract. Providing severely burned patients with a high-carbohydrate, high-protein, low-fat enteral diet can lower the incidence of catabolism and pneumonia, compared to a high-fat, high-protein, low-carbohydrate product. While providing adequate calories and protein is the foundation of nutritional support, it is also important to provide vitamins and minerals, also known as micronutrients. Depressed levels of vitamin C, vitamin D, selenium, vitamin E, zinc, and copper have been reported in burn patients, and these losses occur mainly through the skin and urine.

Some nutritional or metabolically active supplements have demonstrated promise in promoting anabolism in burn patients, including insulin, the anabolic steroid oxandrolone, and propranolol; however, ongoing and future research is necessary to better understand modulation of the hypermetabolic response to severe burn injury and continue to improve burn outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessey PQ, Lentz CW, Edelman LS, Faraklas I, Finocchiarro MA, Kemalyna KA, et al. National Burn Repository 2013 Report. Chicago: American Burn Association; National Burn Repository; 2013 [cited 2013 Sep 30]. Available at http://ameriburn.org/2013NBRAnnualReport.pdf. Accessed 3 Mar 2014.

  2. Rodriguez NA, Jeschke MG, Williams FN, Kamolz LP, Herndon DN. Nutrition in burns: Galveston contributions. JPEN J Parenter Enteral Nutr. 2011;35:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Curreri PW, Luterman A. Nutritional support of the burned patient. Surg Clin North Am. 1978;58:1151.

    Article  CAS  PubMed  Google Scholar 

  4. Waxman K, Rebello T, Pinderski L, O’Neal K, Khan N, Tourangeau S, Himes E, Cordill K. Protein loss across burn wounds. J Trauma. 1987;27:136–40.

    Article  CAS  PubMed  Google Scholar 

  5. Prelack K, Cunningham JJ, Sheridan RL, Tompkins RG. Energy and protein provisions revisited: an outcomes-based approach for determining require-ments. J Burn Care Rehabil. 1997;18:177–81.

    Article  CAS  PubMed  Google Scholar 

  6. Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care. 2000;15:12–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hart DW, Wolf SE, Mlcak R, Chinkes DL, Ramzy PI, Obeng MK, Ferrando AA, Wolfe RR, Herndon DN. Persistence of muscle catabolism after severe burn. Surgery. 2000;128:312–9.

    Article  CAS  PubMed  Google Scholar 

  8. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and the American Society for Parenteral and Enteral Nurition. JPEN. 2016;40(2):159–211.

    Article  CAS  Google Scholar 

  9. Saffle JR, Larson CM, Sullivan J. A randomized trial of indirect calorimetry-based feedings in thermal injury. J Trauma. 1990;30(7):776–82.

    Article  CAS  PubMed  Google Scholar 

  10. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601–9.

    Article  PubMed  Google Scholar 

  11. Czapran A, Headdon W, Deane AM, Lange K, Chapman MJ, Heyland DK. International observational study of nutrition support in mechanically ventilated patients following burn injury. Burns. 2015;41(3):510–8.

    Article  PubMed  Google Scholar 

  12. Graves C, Saffle J, Cochran A. Actual burn nutrition care practices: an update. J Burn Care Res. 2009;30(1):77–82.

    Article  PubMed  Google Scholar 

  13. Milner EA, Cioffi WG, Mason AD, McManus WF, Pruitt BA Jr. A longitudinal study of resting energy expenditure in thermally injured patients. J Trauma. 1994;37:167–70.

    Article  CAS  PubMed  Google Scholar 

  14. Carlson DE, Cioffi WG Jr, Mason AD Jr, McManus WF, Pruitt BA Jr. Resting energy expenditure in patients with thermal injuries. Surg Gynecol Obstet. 1992;174:270–6.

    CAS  PubMed  Google Scholar 

  15. Harris JA, Benedict FG. Biometric studies of basal metabolism in man. Washington, DC: Carnegie Institute of Washington; 1919.

    Google Scholar 

  16. Kurmis R, Greenwood J, Aromataris E. Trace element supplementation following severe burn injury: a systematic review and meta-analysis. J Burn Care Res. 2016;37:143–59.

    Article  PubMed  Google Scholar 

  17. Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J Trauma. 2007;62:676–81.

    Article  CAS  PubMed  Google Scholar 

  18. Keleman JJ 3rd, Cioffi WG Jr, Mason AD Jr, Mozingo DW, McManus WF, Pruitt BA Jr. Effect of ambient temperature on metabolic rate after thermal injury. Ann Surg. 1996;223:406–12.

    Article  Google Scholar 

  19. Matsuda T, Clark N, Hariyani GD, Bryant RS, Hanumadass ML, Kagan RJ. The effect of burn wound size on resting energy expenditure. J Trauma. 1987;27:115–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mlcak RP, Jeschke MG, Barrow RE, Herndon DN. The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg. 2006;244:121–30.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hart DW, Wolf SE, Chinkes DL, Gore DC, Micak RP, Beauford RB, et al. Determinants of skeletal muscle catabolism after severe burn. Ann Surg. 2000;232:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25:37–44.

    Article  PubMed  Google Scholar 

  23. Faisy C, Candela Llerena M, Savalle M, Savalle M, Mainardi JL, Fagon JY. Early ICU energy deficit is a risk factor for Staphylococcus aureus ventilator-associated pneumonia. Chest. 2011;140:1254–60.

    Article  PubMed  Google Scholar 

  24. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeax RNMC, Delarue J, Berger MM. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    Article  PubMed  Google Scholar 

  25. Moran L, Custer P, Murphy G. Nutritional assessment of lean body mass. JPEN J Parenter Enteral Nutr. 1980;4:595.

    Google Scholar 

  26. Singer P, Reintam Blaser A, Berger MM, Alhazzani W, Calder PC, Casaer MP. ESPEN guidelines on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48–79.

    Article  PubMed  Google Scholar 

  27. Alverdy J, Chi HS, Sheldon GF. The effect of parenteral nutrition on gastrointestinal immunity. The importance of enteral stimulation. Ann Surg. 1985;202:681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holt B, Graves C, Faraklas I, Cochran A. Compliance with nutrition support guidelines in acutely burned patients. Burns. 2012;38(5):645–9.

    Article  PubMed  Google Scholar 

  29. Mosier MJ, Pham TN, Klein MB, Gibran NS, Arnoldo BD, Gamelli RL, Tompkins RG, Herndon DN. Early enteral nutrition in burns: compliance with guidelines and associated outcomes in a multicenter study. J Burn Care Res. 2011;32:104–9.

    Article  PubMed  Google Scholar 

  30. Khorasani EN, Mansouri F. Effect of early enteral nutrition on morbidity and mortality in children with burns. Burns. 2010;36:1067–71.

    Article  PubMed  Google Scholar 

  31. Blackburn GL, Bistrian BR. Nutritional care of the injured and/or septic patient. Surg Clin North Am. 1976;56:1195.

    Article  CAS  PubMed  Google Scholar 

  32. Raff T, Germann G, Hartmann B. The value of early enteral nutrition in the prophylaxis of stress ulceration in the severely burned patient. Burns. 1997;23:313.

    Article  CAS  PubMed  Google Scholar 

  33. Raff T, Hartmann B, Germann G. Early intragastric feeding of seriously burned and long-term ventilated patients: a review of 55 patients. Burns. 1997;23:19.

    Article  CAS  PubMed  Google Scholar 

  34. Esparza J, Boivin MA, Hartshorne MF, Boivin MA, Hartshorne MF, Levy H. Equal aspiration rates in gastrically and transpylorically fed critically ill patients. Intensive Care Med. 2001;27:660–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hauschild TB, Fu KY, Hipwell RC, Baraghoshi G, Mone MC, Nirula MC, Nirula R, Kimball EJ, Barton RG. Safe, timely, convenient, and cost-effective: a single-center experience with bedside placement of enteral feeding tubes by midlevel providers using fluoroscopic guidance. Am J Surg. 2012;204(6):958–62.

    Article  PubMed  Google Scholar 

  36. Jenkins ME, Gottschlich MM, Warden GD. Enteral feeding during operative procedures in thermal injuries. J Burn Care Rehabil. 1994;15:199.

    Article  CAS  PubMed  Google Scholar 

  37. Mayes T, Gottschlich MM, Warden GD. Nutrition intervention in pediatric patients with thermal injuries who require laparotomy. J Burn Care Rehabil. 2000;21:451.

    Article  CAS  PubMed  Google Scholar 

  38. Dylewksi ML, Baker M, Prelack K, Weber JM, Hursey D, Lydon M, Fagan SP, Sheridan RL. The safety and efficacy of parenteral nutrition among pediatric patients with burn injuries. Pediatr Crit Care Med. 2013;14(3):e120–5.

    Article  PubMed  Google Scholar 

  39. Wolfe RR, Allsop JR, Burke JF. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism. 1979;28:210–20.

    Article  CAS  PubMed  Google Scholar 

  40. Masters B, Aarabi S, Sidhwa F, Wood F. High-carbohydrate, high-protein, low-fat versus low-carbohydrate, high-protein, high-fat enteral feeds for burns. Cochrane Database Syst Rev. 2012;1. https://doi.org/10.1002/14651858.CD006122.pub3.

  41. Consensus recommendations from the U.S. summit on immune-enhancing enteral therapy. JPEN J Parenter Enteral Nutr. 2001;25:S61–2.

    Google Scholar 

  42. Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012. https://doi.org/10.1155/2012/539426.

  43. Gottschlich MM, Jenkins M, Warden GD, Baumer T, Havens P, Snook JT, Alexander JW. Differential effects of three enteral dietary regimens on selected outcome variables in burn patients. JPEN J Parenter Enteral Nutr. 1990;14:225–36.

    Article  CAS  PubMed  Google Scholar 

  44. Saito H, Trocki O, Alexander JW, Kopcha R, Heyd T, Joffe SN. The effect of route of nutrient administration on the nutritional state, catabolic hormone secretion, and gut mucosal integrity after burn injury. JPEN J Parenter Enteral Nutr. 1987;11:1–7.

    Article  CAS  PubMed  Google Scholar 

  45. Saffle J, Wiebke G, Jennings K, Morris SE, Barton RG. Randomized trial of immune-enhancing enteral nutrition in burn patients. J Trauma. 1997;42:793–800.

    Article  CAS  PubMed  Google Scholar 

  46. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, D’Elia M, Bernier J. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med. 2003;31:2444–9.

    Article  CAS  PubMed  Google Scholar 

  47. Herndon DN. Nutritional and pharmacological support of the metabolic response to injury. Minerva Anestesiol. 2003;69:264.

    CAS  PubMed  Google Scholar 

  48. Demling RH, DeSanti L. Oxandrolone induced lean mass gain during recovery from severe burns is maintained after discontinuation of the anabolic steroid. Burns. 2003;29:793–7.

    Article  PubMed  Google Scholar 

  49. Bulger EM, Jurkovich GJ, Farver CL, Klotz P, Maier RV. Oxandrolone does not improve outcome of ventilator dependent surgical patients. Ann Surg. 2004;240:472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nathens AB, Neff MJ, Jurkovich GJ, Klotz P, Farver K, Ruzinski JT, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236:814–22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rock CL, Dechert RE, Khilnani R, Parker RS, Rodriguez JL. Carotenoids and antioxidant vitamins in patients after burn injury. J Burn Care Rehabil. 1997;18:269–78.

    Article  CAS  PubMed  Google Scholar 

  52. Gottschlich MM, Mayes T, Choury J, Warden GD. Hypovitaminosis D in acutely injured pediatric burn patients. J Am Diet Assoc. 2004;104:931–41.

    Article  PubMed  Google Scholar 

  53. Berger MM, Cavadini C, Bart A, Mansourian R, Guinchard S, Bartholdi I, et al. Cutaneous copper and zinc losses in burns. Burns. 1992;18:373–80.

    Article  CAS  PubMed  Google Scholar 

  54. Dylewski ML, Bender JC, Smith AM, Prelack K, Lydon M, Weber JM, Sheridan RL. The selenium status of pediatric patients with burn injuries. J Trauma. 2010;69:584–8.

    Article  CAS  PubMed  Google Scholar 

  55. Traber MG, Leonard SW, Traber DL, Traber LD, Gallagher J, Bobe G, et al. Alpha tocopherol adipose tissue stores are depleted after burn injury in pediatric patients. Am J Clin Nutr. 2010;92:1378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cunningham J, Leffell M, Harmatz P. Burn severity, copper dose, and plasma ceruloplasmin in burned children during total parenteral nutrition. Nutrition. 1993;9:329–32.

    CAS  PubMed  Google Scholar 

  57. Gosling P, Rothe HM, Sheehan TM, Hubbard LD. Serum copper and zinc concentrations in patients with burns in relation to burn surface area. J Burn Care Rehabil. 1995;16:481–6.

    Article  CAS  PubMed  Google Scholar 

  58. Khorasani G, Hosseinimehr SJ, Kaghazi Z. The alteration of plasma’s zinc and copper levels in patients with burn injuries and the relationship to the time after burn injuries. Singap Med J. 2008;49:627–30.

    CAS  Google Scholar 

  59. Voruganti VS, Klein GL, Lu HX, et al. Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns. 2005;31:711–6.

    Article  PubMed  Google Scholar 

  60. Berger MM. Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract. 2006;21:438–49.

    Article  PubMed  Google Scholar 

  61. Nordlund M, Pham T, Gibran N. Micronutrients after burn injury: a review. J Burn Care Res. 2014;35:121–33.

    Article  PubMed  Google Scholar 

  62. Rousseau AF, Damas P, Ledoux D, Lukas P, Carlisi A, Le Goff C, et al. Vitamin D status after a high dose of cholecalciferol in healthy and burn subjects. Burns. 2015;41(5):1028–34.

    Article  PubMed  Google Scholar 

  63. Rousseau AF, Foidart-Desalle M, Ledoux D, Remy C, Croisier JL, Damas P, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength, and bone health: a one year pilot randomized controlled trial in adults with severe burns. Burns. 2015;41(2):317–25.

    Article  PubMed  Google Scholar 

  64. Zhang YP, Wan YD, Sun TW, Kan QC, Wang LX. Association between vitamin D deficiency and mortality in critically ill adult patients: a meta-analysis of cohort studies. Crit Care. 2014;18(6):684.

    Article  PubMed  PubMed Central  Google Scholar 

  65. de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis, and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18(6):660.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Upala S, Sanguankeo A, Permalung N. Significant association between vitamin D deficiency and sepsis: a systematic review and meta-analysis. BMC Anesthesiol. 2015;15:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mayes T, Gottschlich MM, Khoury J, Kagan RJ. Investigation of bone health subsequent to vitamin D supplementation on children following burn injury. Nutr Clin Pract. 2015;30(6):830–7.

    Article  CAS  PubMed  Google Scholar 

  68. Cope O, Langohr J, Moore F, Webster RC. Expeditious care of full-thickness burn wounds by surgical excision and grafting. Ann Surg. 1947;125:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10:1103–8.

    Article  CAS  PubMed  Google Scholar 

  70. Manafo W, Auelenbacher C, Papplardo C. Early tangential excision of the eschars of major burns. Arch Surg. 1972;104:503–7.

    Article  Google Scholar 

  71. Burke J, Bondoc C, Quinby W. Primary burn excision and immediate grafting: a method for shortening illness. J Trauma. 1974;14:389–95.

    Article  CAS  PubMed  Google Scholar 

  72. Burke J, Quinby W, Bondoc C. Primary excision and prompt grafting as routine therapy for the treatment of thermal burns in children. Surg Clin North Am. 1976;56:447–94.

    Article  Google Scholar 

  73. Thompkins RG, Burke J, Schoenfeld DA, Bondoc CC, Quinby WC Jr, Behringer GC, Ackroyd FW. Prompt eschar excision: a treatment system contributing to reduced burn mortality. Ann Surg. 1986;204:272–81.

    Article  Google Scholar 

  74. Thompkins RG, Remensnyder JP, Burke JF, Tompkins DM, Hilton JF, Schoenfeld DA, et al. Significant reductions in mortality for children with burn injuries through the use of prompt eschar excision. Ann Surg. 1988;208:577–85.

    Article  Google Scholar 

  75. Deitch E, Clothier J. Burns in the elderly: an early surgical approach. J Trauma. 1983;23:891–4.

    Article  CAS  PubMed  Google Scholar 

  76. Demling R. Effect of early burn excision and grafting on pulmonary function. J Trauma. 1984;24:830–4.

    Article  CAS  PubMed  Google Scholar 

  77. Gray D, Pine R, Harner T, Marvin JA, Engrav LH, Heimbach DM. Early surgical excision versus conventional therapy in patients with 20 to 40 percent burns: a comparative study. Am J Surg. 1982;144:76–80.

    Article  CAS  PubMed  Google Scholar 

  78. Chicarilli ZN, Cuono CB, Heinrich JJ, Fichandler BC, Barese S. Selective aggressive burn excision for high mortality subgroups. J Trauma. 1986;26:18–25.

    Article  CAS  PubMed  Google Scholar 

  79. Herndon D, Parks D. Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma. 1986;26:149–52.

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto H, Silthram S, deSerres S, Hultman CS, Meyer AA. Immediate burn wound excision restores antibody synthesis to bacterial antigen. J Surg Res. 1996;63:157–62.

    Article  CAS  PubMed  Google Scholar 

  81. Demling R, Lalonde C. Early burn excision attenuates the postburn lung and systemic response to endotoxin. Surgery. 1990;108:28–35.

    CAS  PubMed  Google Scholar 

  82. Drost A, Burleson D, Cioffi W, Jordan BS, Mason AD Jr, Pruitt BA Jr. Plasma cytokines following thermal injury and their relationship with patient mortality, burn size, and time postburn. J Trauma. 1993;35:335–9.

    Article  CAS  PubMed  Google Scholar 

  83. Salisbury R, Carnes R, Enterline D. Biological dressings and evaporative water loss from burn wounds. Ann Plast Surg. 1980;5:270.

    Article  CAS  PubMed  Google Scholar 

  84. Childs C, Little RA. Acute changes in oxygen consumption and body temperature after burn injury. Arch Dis Child. 1994;71:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gore DC, Chinkes D, Sanford A, Hart DW, Wolf SE, Herndon DN. Influence of fever on the hypermetabolic response in burn-injured children. Arch Surg. 2003;138:169.

    Article  PubMed  Google Scholar 

  86. Parish RA, Novack AH, Heimbach DM, Engrav LR. Fever as a predictor of infection in burned children. J Trauma. 1987;27:69.

    Article  CAS  PubMed  Google Scholar 

  87. Greenhalgh DG, Saffle JR, Holmes JH 4th, Gamelli RL, Palmieri TL, Horton JW, et al. American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res. 2007;28(6):776–90.

    Article  PubMed  Google Scholar 

  88. Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr. Catecholamines: mediator of the 270 hypermetabolic response to thermal injury. Ann Surg. 1974;180:653–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goodall M, Stone C, Haynes BW Jr. Urinary output of adrenaline and noradrenaline in severe 272 thermal burns. Ann Surg. 1957;145:479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues. 2004;15:45–62.

    Article  PubMed  Google Scholar 

  91. Wolfe RR, Herndon DN, Peters EJ, Peters EJ, Jahoor F, Desai MH, Holland OB. Regulation of lipolysis in severely burned children. Ann Surg. 1987;206:214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arbabi S, Ahrns KS, Wahl WL, Hemmila MR, Wang SC, Brandt MM, Taheri PA. Beta-blocker use is associated with improved outcomes in adult burn patients. J Trauma. 2004;56:265–9.

    Article  CAS  PubMed  Google Scholar 

  93. Herndon DN, Barrow RE, Rutan TC, Minifee P, Jahoor F, Wolfe RR. Effect of propranolol administration on hemodynamic and metabolic responses of burned pediatric patients. Ann Surg. 1988;208:484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–9.

    Article  CAS  PubMed  Google Scholar 

  95. Herndon DN, Nguyen TT, Wolfe RR, Maggi SP, Biolo G, Muller M, Barrow RE. Lipolysis in burned patients is stimulated by the beta 2-receptor for catecholamines. Arch Surg. 1994;129:1301–4.

    Article  CAS  PubMed  Google Scholar 

  96. Jeschke MG, Finnerty CC, Suman OE, Kulp G, Mlcak RP, Herndon DN. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg. 2007;246:351–60.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Aarsland A, Chinkes D, Wolfe RR, Barrow RE, Nelson SO, Pierre E, Herndon DN. Beta-blockade lowers peripheral lipolysis in burn patients receiving growth hormone: rate of hepatic very low density lipoprotein triglyceride secretion remains unchanged. Ann Surg. 1996;223(6):777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barret JP, Jeschke MG, Herndon DN. Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma. 2001;51(4):736–9.

    Article  CAS  PubMed  Google Scholar 

  99. Gore DC, Honeycutt D, Jahoor F, et al. Propranolol diminishing extremity blood flow in burned patients. Ann Surg. 1991;213(6):568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morio B, Irtun O, Herndon DN, Wolfe RR. Propranolol decreases splanchnic triacylglycerol storage in burn patients receiving a high-carbohydrate diet. Ann Surg. 2002;236(2):218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karim A, Ranney RE, Zagarella J, Maibach HI. Oxandrolone disposition and metabolism in man. Clin Pharmacol Ther. 1973;14:862–9.

    Article  CAS  PubMed  Google Scholar 

  102. Orr R, Fiatarone SM. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety. Drugs. 2004;64:725–50.

    Article  CAS  PubMed  Google Scholar 

  103. Barrow RE, Dasu MR, Ferrando AA, Spies M, Thomas SJ, Perez-Polo JR, Herndon DN. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. Ann Surg. 2003;237:422–8.

    PubMed  PubMed Central  Google Scholar 

  104. Demling RH. Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns. 1999;25:215–21.

    Article  CAS  PubMed  Google Scholar 

  105. Hart DW, Wolf SE, Ramzy PI, Chinkes DL, Beauford RB, Ferrando AA, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg. 2001;233:556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wolf SE, Edelman LS, Kemalyan N, Donison L, Cross J, Underwood M, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27:131–9.

    Article  PubMed  Google Scholar 

  107. Wolf SE, Thomas SJ, Dasu MR, Ferrando AA, Chinkes DL, Wolfe R, Herndon DN. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg. 2003;237:801–10.

    PubMed  PubMed Central  Google Scholar 

  108. Cochran A, Thuet W, Holt B, Faraklas I, Smout RJ, Horn SD. The impact of oxandrolone on length of stay following major burn injury: a clinical practice evaluation. Burns. 2013;39(7):1374–9.

    Article  PubMed  Google Scholar 

  109. Porro LJ, Herndon DN, Rodriguez NA, Jennings K, Klein GL, Mlcak RP, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg. 2012;214:489–504.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pham TN, Klein MB, Gibran NS, Arnoldo BN, Gamelli RL, Silver GM. Impact of oxandrolone treatment on acute outcomes after severe burn injury. J Burn Care Res. 2008;29:902–6.

    Article  PubMed  Google Scholar 

  111. Demling RH, DeSanti L. The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns. 2001;17:46–51.

    Article  Google Scholar 

  112. Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, Mesotten D. Clinical review: intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;94:3163.

    Article  PubMed  CAS  Google Scholar 

  113. Pidcoke HF, Wanek SM, Rohleder LS. Glucose variability is associated with high mortality after severe burn. J Trauma. 2009;67:990.

    Article  PubMed  Google Scholar 

  114. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51:540.

    CAS  PubMed  Google Scholar 

  115. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359.

    Article  PubMed  Google Scholar 

  116. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180:821.

    Article  PubMed  Google Scholar 

  117. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283.

    Article  PubMed  Google Scholar 

  118. Biolo G, Zorat F, Antonione R, Ciocchio B. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005;37:2169–79.

    Article  CAS  PubMed  Google Scholar 

  119. Oudemans-van Straaten HM, Bosman RJ, Treskas M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27:84–90.

    Article  CAS  PubMed  Google Scholar 

  120. Griffiths RD, Jones C, Palmer TEA. Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition. 1997;4:296–302.

    Google Scholar 

  121. Griffiths RD, Allen KD, Andrews FJ, Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002;18:546–52.

    Article  CAS  PubMed  Google Scholar 

  122. Lin JJ, Chung XJ, Yang CY, Lau HL. A meta-analysis of trials using the intention to treat principle for glutamine supplementation in critically ill patients with burn. Burns. 2013;39:565–70.

    Article  PubMed  Google Scholar 

  123. Zhou YP, Jiang ZM, Sun YH, Wang XR, Ma EL, Wilmore D. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr. 2003;27:241–5.

    Article  CAS  PubMed  Google Scholar 

  124. Heyland D, Muscedere J, Wischmeyer PE, et al. Randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368:1489–97.

    Article  CAS  PubMed  Google Scholar 

  125. Heyland D, Gunnar E, Cook D, et al. Glutamine and antioxidants in the critically ill patient: a post hoc analysis of a large-scale randomized trial. JPEN J Parenter Enteral Nutr. 2015;39:401–9.

    Article  CAS  PubMed  Google Scholar 

  126. Peng X, Yan H, You Z, Wang S. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns. 2004;30:135–9.

    Article  PubMed  Google Scholar 

  127. Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, et al. Efficacy of recombinant human erythropoietin in critically ill patients a randomized controlled trial. JAMA. 2002;288:2827–35.

    Article  CAS  PubMed  Google Scholar 

  128. Tobalem M, Harder Y, Rezaeian F, Wettstein R. Secondary burn progression decreased by erythropoietin. Crit Care Med. 2013;41:963–71.

    Article  CAS  PubMed  Google Scholar 

  129. Kamolz LP, Smolle-Juettner F, Parvizi D. The use of erythropoietin in burns: sometimes good, sometimes not? Crit Care Med. 2013;41:1138–9.

    Article  PubMed  Google Scholar 

  130. Sherman AR, Barkley M. Nutrition and wound healing. J Wound Care. 2011;20(357–8):360, 362–7.

    Google Scholar 

  131. Stechmiller JK. Understanding the role of nutrition and wound healing. Nutr Clin Pract. 2010;25:61–8.

    Article  PubMed  Google Scholar 

  132. Sanchez-Agreda M, Cimorra GA, Mariona M. Garcia-Jolón. Trace elements in burned patients: studies of zinc, copper and iron contents in serum. Burns. 1977;4:28–31.

    Article  Google Scholar 

  133. Belmonte JA, Ibanez L, Ras MR, Aulesa C, Vinzo J, Iglesias J, Carol J. Iron metabolism in burned children. Eur J Pediatr. 1999;158:556–9.

    Article  CAS  PubMed  Google Scholar 

  134. Food and Agriculture Organization and World Health Organization Expert Consultation. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Córdoba: Food and Agriculture Organization of the United Nations and World Health Organization; 2001.

    Google Scholar 

  135. Alverdy J, Zaborina O, Wu L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr Opin Clin Nutr Metab Care. 2005;8(2):205–9.

    Article  PubMed  Google Scholar 

  136. Arvans DL, Vavricka SR, Ren H, et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G696–704.

    Article  CAS  PubMed  Google Scholar 

  137. Schlotterer M, Bernasconi P, Lebreton F, et al. Value of Saccharomyces boulardii in the digestive acceptability of continuous-flow enteral nutrition in burnt patients. Nutr Clin Metab. 1987;1:31–4.

    Article  Google Scholar 

  138. El-Ghazely MH, Mahmoud WH, Atia MA, Eldip EM. Effect of probiotic administration in the therapy of pediatric thermal burn. Ann Burns Fire Disasters. 2016;29(4):268–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101:812–22.

    Article  PubMed  Google Scholar 

  140. Morrow LE, Kollef MH, Casale TB. Probiotic prophylaxis of ventilator associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med. 2010;182(8):1058–64.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kotzampassi K, Giamarellos-Bourboulis EJ, Voudouris A, et al. Benefits of a synbiotic formula (Synbiotic 2000 Forte) in critically ill trauma patients: early results of a randomized controlled trial. World J Surg. 2006;30:1848–55.

    Article  PubMed  Google Scholar 

  142. Mayes T, Gottschlich MM, James LE, et al. Clinical safety and efficacy of probiotic administration following burn injury. J Burn Care Res. 2015;36(1):92–9.

    Article  PubMed  Google Scholar 

  143. Koren L, Gurfinkel R, Glezinger R, et al. The effect of Lactobacillus bacteria supplement on sepsis and its complications in patients with acute burns. Burns. 2007;33:594–8.

    Article  PubMed  Google Scholar 

  144. Long CL, Schaffel N, Geiger JW, et al. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr. 1979;3:452–7.

    Article  CAS  PubMed  Google Scholar 

  145. Milner EA, Cioffi WG Jr, Mason AD Jr, et al. Accuracy of urinary urea nitro-gen for predicting total urinary nitrogen in thermally injured patients. JPEN J Parenter Enteral Nutr. 1993;17:414–26.

    Article  CAS  PubMed  Google Scholar 

  146. Masters B, Wood F. Nutrition support in burns-Is there consistency in practice? J Burn Care Res. 2008;29:561–71.

    Article  PubMed  Google Scholar 

  147. Davis C, Sowa D, Keim K, Kinnare K, Peterson S. The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center. J Parenter Enter Nutr. 2012;36:197–204.

    Article  CAS  Google Scholar 

  148. Yang HT, Yim H, Cho YS, et al. Prediction of clinical outcomes for massively-burned patients via serum transthyretin levels in the early postburn period. J Trauma Acute Care Surg. 2012;72:999–1005.

    Article  PubMed  Google Scholar 

  149. Moghazy AM, Adly OA, Abbas AH, Moati TA, Ali OS, Mohamed BA. Assessment of the relation between prealbumin serum level and healing of skin-grafted burn wounds. Burns. 2010;36:495–500.

    Article  CAS  PubMed  Google Scholar 

  150. Sheridan RL, Prelack K, Cunningham JJ. Physiologic hypoalbuminemia is well tolerated by severely burned children. J Trauma. 1997;43:448.

    Article  CAS  PubMed  Google Scholar 

  151. Perez-Guisado J, de Haro-Padilla JM, Rioja LF, Derosier LC, de la Torre JI. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition. Int J Burn Trauma. 2013;3(3):159–63.

    CAS  Google Scholar 

  152. Greenhalgh DG, Housinger TA, Kagan RJ, Rieman M, James L, Novak S, et al. Maintenance of serum albumin levels in pediatric burn patients: a prospective, randomized trial. J Trauma. 1995;39:67.

    Article  CAS  PubMed  Google Scholar 

  153. Cartotto R, Callum J. A review of the use of human albumin in burn patients. J Burn Care Res. 2012;33(6):702–17.

    Article  PubMed  Google Scholar 

  154. Lee JO, Gauglitz GC, Herndon DN, Hawkins HK, Halder SC, Jeschke MG. Association between dietary fat content and outcomes in pediatric burn patients. J Surg Res. 2011;166(1):e83–90.

    Article  PubMed  Google Scholar 

  155. Coen JR, Carpenter AM, Shupp JW, Matt SE, Shaw JD, Flanagan KE, et al. The results of a national survey regarding nutritional care of obese burn patients. J Burn Care Res. 2011;32:561–5.

    Article  PubMed  Google Scholar 

  156. A.S.P.E.N. The A.S.P.E.N adult nutrition support core curriculum, vol. 36. 3rd ed; 2017. p. 723–42.

    Google Scholar 

  157. Demling RH. The incidence and impact of pre-existing protein energy malnutrition on outcome in the elderly burn patient population. J Burn Care Rehabil. 2005;26:94.

    Article  PubMed  Google Scholar 

  158. Bell CL, Tamura BK, Masaki KH, Amella EJ. Prevalence and measures of nutritional compromise among nursing home patients: weight loss, low body mass index, malnutrition, and feeding dependency, a systematic review of the literature. J Am Med Dir Assoc. 2013;14(2):94–100.

    Article  PubMed  Google Scholar 

  159. McClave SA, Kushner R, Van Way CW, Cave M, DeLegge M, Dibaise J, et al. Nutrition therapy of the severely obese, critically ill patient: summation of conclusions and recommendations. JPEN J Parenter Enteral Nutr. 2011;35:88S–96S.

    Article  PubMed  Google Scholar 

  160. Joffe A, Wood K. Obesity in critical care. Curr Opin Anaesthesiol. 2007;20(2):113–8.

    Article  PubMed  Google Scholar 

  161. Port AM, Apovian C. Metabolic support of the obese intensive care unit patient: a current perspective. Curr Opin Clin Nutr Metab Care. 2010;13:184–91.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schweiger C, Weiss R, Berry E, Kaidar A. Nutritional deficiencies in bariatric surgery candidates. Obes Surg. 2010;20(2):193–7.

    Article  PubMed  Google Scholar 

  163. Kazemi A, Frazier T, Crave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep. 2010;12(4):288–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mosier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toepfer, D.M., Gamelli, R.L., Mosier, M.J. (2020). Burns. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-39781-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39781-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39780-7

  • Online ISBN: 978-3-030-39781-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics