Skip to main content

Joint Methodology for the Identification and Assessment of Groundwater Dependent Terrestrial Ecosystems in Estonia and Latvia

  • Chapter
  • First Online:
Water Resources Quality and Management in Baltic Sea Countries

Abstract

Dynamic interactions between ground- and surface water are widely known, but the role of groundwater in terrestrial and aquatic ecosystems is often poorly understood and documented due to the spatiotemporal complexity. Many countries have not yet completed the assessment of groundwater dependent ecosystems (GDEs). GDEs are valuable ecosystems that depend on groundwater input and can not be considered and assessed separately. Changes in the quantity and chemical composition of groundwater recharge may result in significant and permanent damage on GDE flora and fauna. Aquifers are dynamic systems which are not subject to administrative boundaries and borders, therefore should be managed in close cooperation between neighbouring countries. According to the European Union’s Water Framework Directive 2000/60/EC, a groundwater body is considered to be in “poor status” if environmentally negative pressure on groundwater causes significant damage to related GDEs. The identification of GDEs in Estonia is currently underway. A theoretical approach on how to identify, assess, and monitor the groundwater dependent terrestrial ecosystems (GDTEs) has been developed. Similar climatic and hydrogeological conditions allow to adapt the methodology to Latvia and develop it jointly further. The first step in this joint methodology is to (i) find indicators and (ii) define criteria for (i) the evaluation of quantitative and qualitative effects of groundwater bodies on GDTEs and (ii) assessment of ecosystems. Subsequently, the quantitative and qualitative effects on GDTEs using assessment schemes must be identified. In this chapter, we are presenting a methodology for GDTE identification and assessment which could be used in similar situation in other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kløve B, Ala-aho P, Bertrand G et al (2011) Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environ Sci Policy 14:770–781. https://doi.org/10.1016/j.envsci.2011.04.002

    Article  Google Scholar 

  2. Rohde MM, Froend R, Howard J (2017) A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 55:293–301. https://doi.org/10.1111/gwat.12511

    Article  CAS  Google Scholar 

  3. Kløve B, Allan A, Bertrand G et al (2011) Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ Sci Policy 14:782–793. https://doi.org/10.1016/j.envsci.2011.04.005

    Article  Google Scholar 

  4. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy

    Google Scholar 

  5. WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy

    Google Scholar 

  6. Sánchez D, Carrasco F, Andreo B (2009) Proposed methodology to delineate bodies of groundwater according to the European water framework directive. Application in a pilot Mediterranean river basin (Málaga, Spain). J Environ Manage 90:1523–1533. https://doi.org/10.1016/j.jenvman.2008.11.001

    Article  Google Scholar 

  7. Whiteman M, Brooks A, Skinner A, Hulme P (2010) Determining significant damage to groundwater-dependent terrestrial ecosystems in England and Wales for use in implementation of the Water Framework Directive. Ecol Eng 36:1118–1125. https://doi.org/10.1016/j.ecoleng.2010.03.013

    Article  Google Scholar 

  8. Rejman W (2007) EU water framework directive versus real needs of groundwater management. Water Resour Manag 21:1363–1372. https://doi.org/10.1007/s11269-006-9088-1

    Article  Google Scholar 

  9. European Commission (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration

    Google Scholar 

  10. Hinsby K, Condesso de Melo MT, Dahl M (2008) European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci Total Environ 401:1–20. https://doi.org/10.1016/j.scitotenv.2008.03.018

    Article  CAS  Google Scholar 

  11. European Commission (2011) Technical Report No. 6. Dependent Terrestrial Ecosystems. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)

    Google Scholar 

  12. European Commission (2014) Technical Report on methodologies used for assessing groundwater dependent ecosystems. Technical Report No. 8. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)

    Google Scholar 

  13. Eamus D, Fu B, Springer AE, Stevens LE (2016) Groundwater dependent ecosystems: classification, identification techniques and threats. In: Jakeman AJ et al (eds) Integrated groundwater management. https://doi.org/10.1007/978-3-319-23576-9_13

    Chapter  Google Scholar 

  14. Kilroy G, Coxon C, Ryan J et al (2005) Groundwater and wetland management in the Shannon river basin (Ireland). Environ Sci Policy 8:219–225. https://doi.org/10.1016/J.ENVSCI.2005.03.001

    Article  Google Scholar 

  15. Estonian Topographic Database (2017)

    Google Scholar 

  16. Terasmaa J, Bartout P, Marzecova A, Touchart L, Vandel E, Koff T, Choffel Q, Kapanen G, Maleval V, Vainu M, Millot C, Qsair Z, Al Domany M (2019) A quantitative assessment of the contribution of small standing water bodies to the European waterscapes—case of Estonia and France. Heliyon (in press)

    Google Scholar 

  17. Truus L, Ilomets M, Pajula R (2019) Ten reasons to restore estonian mires. Publication of an EU peatland project Life Peat Restore 2016–2021, Tallinn University, 32 pp

    Google Scholar 

  18. Jaagus J (2013) Nüüdiskliima [Modern climate]. In: Tarand A, Jaagus J, Kallis A (eds) Eesti Kliima Minevikus Ja Tänapäeval [Estonian climate in the past and future]. Tartu Ülikooli Kirjastus, Tartu, pp 387–453 (in Estonian)

    Google Scholar 

  19. Raukas A, Teedumäe A (eds) (1997) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, p 436

    Google Scholar 

  20. Andresmaa E (2001) Groundwater management and protection in Estonia. Workshop on the protection of groundwaters used as a source of drinking water supply, Budapest

    Google Scholar 

  21. Estonian Environmental Agency (2019)

    Google Scholar 

  22. Auniņa L (2018). Purvi un avoti [Wetlands and springs]. In: Nikodemus O, Kļaviņš M, Krišjāne Z, Zelčs, V (eds) Latvija. Zeme, daba, tauta, valsts [Latvia. Earth, nature, nation, country]. The University of Latvia Press, Riga, pp 402–410 (in Latvian)

    Google Scholar 

  23. Apsīte E (2018) Upes. Ezeri. Ūdenskrātuves [Rivers. Lakes. Reservoirs]. In: Nikodemus O, Kļaviņš M, Krišjāne Z, Zelčs V (eds) Latvija. Zeme, daba, tauta, valsts [Latvia. Earth, nature, nation, country]. The University of Latvia Press, Riga, pp 275–313 (in Latvian)

    Google Scholar 

  24. Central Statistical Bureau of Latvia. Database GZG010. Geographical position of the Republic of Latvia (modified in 2018)

    Google Scholar 

  25. Central Statistical Bureau of Latvia. Database GZG030. Major rivers (modified in 2015)

    Google Scholar 

  26. Central Statistical Bureau of Latvia. Database GZG050. Major lakes (modified in 2015)

    Google Scholar 

  27. Briede, A (2016). Latvijas klimats un tā mainības raksturs [Climate in Latvia and its variability characteristics]. In: Kļaviņš M, Zaļoksnis J (eds) Klimats un ilgtspējīga attīstība [Climate and sustainable development]. The University of Latvia Press, Riga, pp 55–90 (in Latvian)

    Google Scholar 

  28. Lukševičs E, Stinkulis Ģ, Mūrnieks A, Popovs K (2012) Geological evolution of the Baltic Artesian Basin. In: Dēliņa A, Kalvāns A, Saks T, Bethers U, Vircavs V (eds) Highlights of groundwater research in the Baltic Artesian Basin. University of LatviaRiga, pp 7–52

    Google Scholar 

  29. Jodkazis V (1989) (Йoдкaзиc B.) Peгиoнaльнaя гидpoгeoлoгия Пpибaлтики [Regional hydrogeology of the Baltic region]. Vilnius (in Russian)

    Google Scholar 

  30. Levins I, Levina N, Gavena I (1998) Latvijas pazemes ūdeņu resursi [Latvian groundwater resources]. State Geological Survey, Riga (in Latvian)

    Google Scholar 

  31. Kalvāns A (2012) A list of the factor controlling groundwater composition in the Baltic Artesian Basin. In: Dēliņa A, Kalvāns A, Saks T, Bethers U, Vircavs V (eds) Highlights of groundwater research in the Baltic Artesian Basin, University of Latvia, Riga, pp 91–105

    Google Scholar 

  32. Popovs K, Saks T, Jātnieks J (2015) A comprehensive approach to 3D geological modeling of sedimentary basins: example of Latvia, central part of Baltic Basin. Estonian J Earth Sci 64(2):173–188

    Article  Google Scholar 

  33. Retike I, Delina A, Bikse J, Kalvans A (2016b) Quaternary groundwater vulnerability assessment in latvia using multivariate statistical analysis. In: 22nd annual international scientific conference research for rural development, vol 1. Latvia University of Agriculture, Jelgava, Latvia, 18–20 May 2016, pp 210–215

    Google Scholar 

  34. Retike I, Kalvāns A, Popovs K, Bikse J, Babre A, Delina A (2016a) Geochemical classification of groundwater using multivariate statistical analysis in Latvia. Hydrol Res (In Print) https://doi.org/10.2166/nh.2016.020

    Article  CAS  Google Scholar 

  35. UKTAG (2004) Guidance on the identification and risk assessment of groundwater dependent terrestrial ecosystems. UK technical advisory group on the Water Framework Directive

    Google Scholar 

  36. European Commission (1992) Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. OJ L 206, 22.7.1992, p 7

    Google Scholar 

  37. Retike I, Priede A, Terasmaa J, Tarros S, Kalvans A, Türk K, Bikše J, Hansen-Vera R (2019) Development of joint methodology for groundwater dependent terrestrial ecosystem identification and assessment in transboundary area (Estonia, Latvia). In: Geophysical Research Abstracts, European Geosciences Union General Assembly, Vienna, Austria; 7–12 April 2019

    Google Scholar 

  38. European Commission (2010) Guidance document No. 26. Guidance on Risk Assessment and the Use of Conceptual Models for Groundwater. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)

    Google Scholar 

  39. Noorduijn SL, Cook PG, Simmons CT, Richardson SB (2019) Protecting groundwater levels and ecosystems with simple management approaches. Hydrogeol J 27:225–237. https://doi.org/10.1007/s10040-018-1849-4

    Article  Google Scholar 

  40. European Commission (2009) Guidance on groundwater status and trend assessment. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)

    Google Scholar 

  41. Müller D, Blum A, Hart A, Hookey J, Kunkel R, Scheidleder A, et al. (2006) Final proposal of a methodology to set up groundwater threshold values in Europe

    Google Scholar 

  42. European Commission (2015) Threshold values—initial analysis of 2015 questionnaire responses. Technical Report. EC CIS Working Group

    Google Scholar 

  43. UKTAG (2012) Technical report on groundwater dependent terrestrial ecosystem (GWDTE) threshold values. UK Technical Advisory Group on the Water Framework Directive

    Google Scholar 

Download references

Acknowledgements

The study is carried out within the project “Joint management of groundwater dependent ecosystems in transboundary Gauja-Koiva river basin” (GroundEco, EstLat62) funded by ERDF Interreg Estonia-Latvia cooperation programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaanus Terasmaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terasmaa, J. et al. (2020). Joint Methodology for the Identification and Assessment of Groundwater Dependent Terrestrial Ecosystems in Estonia and Latvia. In: Negm, A., Zelenakova, M., Kubiak-Wójcicka, K. (eds) Water Resources Quality and Management in Baltic Sea Countries. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-39701-2_12

Download citation

Publish with us

Policies and ethics