Skip to main content

Abstract

Agro-industrial waste is mostly composed of lignocellulosic biomass, which is inexpensive, renewable, and abundant. It provides a unique natural resource for cost-effective bioenergy collection. Agro-industries generate a wide number of waste products either in the form of solid or liquid. The production of agro-industrial waste is growing worldwide and these wastes cannot be disposed of directly on the ground without any treatment, as they will cause serious environmental concerns. The problem of disposal and management of these wastes is a major issue especially in developing countries nowadays. Hence these agro-industrial waste must be treated before discharging or reuse for other purposes by effective methods. The conventional methods require the use of harsh and toxic chemicals with high processing cost and high waste management cost. In serious consideration of the worldwide economic and environmental pollution issues, there has been increasing research interest in the management of the agro-industrial waste proposing value-added green technologies. Biological treatment is seen as one of the promising green biotechnologies that gives less harm to the environment while balance out the ecosystem. The biological treatment utilizes microorganisms mainly from the bacterial and fungal species to cope with the issue raised and also act as bioremediation. This chapter begins with an overview of agro-industrial waste and further describes a number of biological treatments performed together with its advantages and disadvantages. This chapter finally deals with the possibility of creating a sustainable practice in industries processing agricultural products. Several suggestions and recommendations for future considerations are also thoroughly highlighted. The ultimate goal of this biological treatment chapter is to prepare the agricultural waste for a cleaner process toward a better and safer product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastopoulos I et al (2017) A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J Mol Liq 240:179–188

    Article  CAS  Google Scholar 

  • Andri I et al (2018) Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia 147:452–457

    Article  CAS  Google Scholar 

  • Aneta VB et al (2019) The production of cellulase from the waste tobacco residues remaining after polyphenols and nicotine extraction and bacterial pre-treatment. J Serb Chem Soc 84(2):129–140

    Article  Google Scholar 

  • Banerjee S et al (2018) Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci Technol 82:60–70

    Article  CAS  Google Scholar 

  • Basso D et al (2016) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag 47:114–121

    Article  CAS  PubMed  Google Scholar 

  • Batuecas E et al (2019) Life cycle assessment of waste disposal from olive oil production: anaerobic digestion and conventional disposal on soil. J Environ Manag 237:94–102

    Article  Google Scholar 

  • Beltrán-Ramírez F et al (2019) Agro-industrial waste revalorization: the growing biorefinery. In: Biomass for bioenergy-recent trends and future challenges. IntechOpen, Croatia

    Google Scholar 

  • Bharathiraja S et al (2017) Production of enzymes from agricultural wastes and their potential industrial applications. In: Kim S-K, Toldrá F (eds) Advances in food and nutrition research. Academic, Cham, pp 125–148

    Google Scholar 

  • Bhavna M, Magar J (2010) Use of agricultural wastes for cellulases production by Aspergillus niger with submerged and solid state fermentation. Bionano Front 3(2):189–192

    Google Scholar 

  • Carlini M, Castellucci S, Moneti M (2015) Anaerobic co-digestion of olive-mill solid waste with cattle manure and cattle slurry: analysis of bio-methane potential. Energy Procedia 81:354–367

    Article  CAS  Google Scholar 

  • Carrere H et al (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenthamarakshan A et al (2017) Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of design of experiments. BMC Biotechnol 17(1):12–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cristobal-Sarramian A, Atzmüller D (2018) Yeast as a production platform in biorefineries: conversion of agricultural residues into value-added products. Agron Res 16(2):377, 388

    Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27(4):327–337

    Article  CAS  Google Scholar 

  • Deng G-F et al (2012) Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci 13(7):8308–8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollhofer V et al (2018) Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. Bioresour Technol 264:219–227

    Article  CAS  PubMed  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145(1–3):99–110

    Article  CAS  PubMed  Google Scholar 

  • Gerliani N, Hammami R, Aïder M (2019) Assessment of the extractability of protein-carbohydrate concentrate from soybean meal under acidic and alkaline conditions. Food Biosci 28:116–124

    Article  CAS  Google Scholar 

  • Go AW et al (2019) Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: a Philippine context. Energ Strat Rev 23:100–113

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hernández D et al (2019) Evaluation of sustainable manufacturing of pellets combining wastes from olive oil and forestry industries. Ind Crop Prod 134:338–346

    Article  CAS  Google Scholar 

  • Jayakumar S et al (2017) The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sust Energ Rev 72:33–47

    Article  CAS  Google Scholar 

  • Joana Gil‐Chávez G et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12(1):5–23

    Article  CAS  Google Scholar 

  • Josephine M (2014) Solid waste management through mushroom cultivation–an eco friendly approach. Int J Biol Biomol Agric Food Biotechnol Eng 8(2):115–117

    Google Scholar 

  • Kamthan R, Tiwari I (2017) Agricultural wastes-potential substrates for mushroom cultivation. Eur J Exp Biol 7(5):31

    Article  CAS  Google Scholar 

  • Kang SW et al (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Kaur A et al (2010) Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101(23):9150–9155

    Article  CAS  PubMed  Google Scholar 

  • Kewan KZ et al (2019) Nutritive utilization of Moringa oleifera tree stalks treated with fungi and yeast to replace clover hay in growing lambs. Agrofor Syst 93(1):161–173

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Kucharska K et al (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar K et al (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4(1):18

    Article  Google Scholar 

  • Kusi OA, Premjet D, Premjet S (2018) A review article of biological pre-treatment of agricultural biomass. Pertanika J Trop Agric Sci 41(1):19–40

    Google Scholar 

  • Latifi P, Karrabi M, Danesh S (2019) Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids). Renew Sust Energ Rev 107:288–296

    Article  CAS  Google Scholar 

  • Li X, Kim TH, Nghiem NP (2010) Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresour Technol 101(15):5910–5916

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2018) Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures. Bioresour Technol 247:1210–1214

    Article  CAS  PubMed  Google Scholar 

  • Lizardi-Jimenez MA, Hernandez-Martinez R (2017) Solid state fermentation (SSF): diversity of applications to valorize waste and biomass, vol 7. Springer, Berlin

    Google Scholar 

  • Mahmoud A et al (2018) Antioxidant and anticancer efficacy of therapeutic bioactive compounds from fermented olive waste. Grasas Aceites 69(3):266

    Article  CAS  Google Scholar 

  • Mamimin C et al (2019) Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. Int J Hydrog Energy 44(32):17224–17237

    Article  CAS  Google Scholar 

  • Markou G et al (2018) Using agro-industrial wastes for the cultivation of microalgae and duckweeds: contamination risks and biomass safety concerns. Biotechnol Adv 36(4):1238–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Ruano JA et al (2019) Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: techno-economic assessment. Appl Energy 241:504–518

    Article  Google Scholar 

  • Meehnian H, Jana AK, Jana MM (2016) Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6(2):235

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo J et al (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag 227:395–405

    Article  CAS  Google Scholar 

  • Molina G et al (2018) Beta-glucosidase from penicillium. In: Gupta V (ed) New and future developments in microbial biotechnology and bioengineering in new and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 137–151

    Chapter  Google Scholar 

  • Navas CS, Reboredo MM, Granados DL (2015) Comparative study of agroindustrial wastes for their use in polymer matrix composites. Procedia Mater Sci 8:778–785

    Article  CAS  Google Scholar 

  • Oyedele O, Adeosun M, OO K (2018) Low cost production of mushroom using agricultural waste in a controlled environment for economic advancement. Int J Waste Resour 8(1):1–5

    Google Scholar 

  • Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76

    Article  Google Scholar 

  • Pellera F, Gidarakos E (2017) Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: evaluation of mono-digestion and co-digestion systems. Waste Manag 68:103–119

    Article  PubMed  Google Scholar 

  • Petre M, Teodorescu A (2012) Biotechnology of agricultural wastes recycling through controlled cultivation of mushrooms. In: Petre M (ed) Advances in applied biotechnology. IntechOpen, Croatia

    Chapter  Google Scholar 

  • Prajapati BP et al (2018) Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250:733–740

    Article  CAS  PubMed  Google Scholar 

  • Pramanik K, Sahu S (2017) Biological treatment of lignocellulosic biomass to bioethanol. Adv Biotechnol Microbiol 5(5):555674

    Google Scholar 

  • Prasertsan P, Prasertsan S, Kittikun A (2007) Recycling of agro-industrial wastes through cleaner technology. Biotechnology 10:1–11

    Google Scholar 

  • Priyanka M et al (2018) Agricultural waste management for bioethanol production. In: Pathak V, Navneet (eds) Handbook of research on microbial tools for environmental waste management. IGI Global, Hershey, pp 1–33

    Google Scholar 

  • Ravindran R et al (2018) A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 5(4):93

    Article  CAS  PubMed Central  Google Scholar 

  • Rouches E et al (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198

    Article  CAS  Google Scholar 

  • Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15

    Article  Google Scholar 

  • Saggi SK, Dey P (2016) An overview of simultaneous saccharification and fermentation of starchy and lignocellulosic biomass for bio-ethanol production. Biofuels 10(3):1–13

    Article  CAS  Google Scholar 

  • Saha S, Ghosh R (2019) Cellulose nanocrystals from lignocellulosic agro-waste: a comparative study on conventional and ultrasonic assisted preparation methods. Mater Today Proc 11:628–636

    Article  CAS  Google Scholar 

  • Salama A et al (2016) Effect of residues agricultural wastes on the productivity and quality of Pleurotus colombinus L. by using polyethylene bags wall technique. Adv Plants Agric Res 5(3):00181

    Google Scholar 

  • Sanguanchaipaiwong V, Leksawasdi N (2018) Butanol production by Clostridium beijerinckii from pineapple waste juice. Energy Procedia 153:231–236

    Article  CAS  Google Scholar 

  • Sarkar N et al (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Shen Q et al (2019) A comparative study of pig manure with different waste straws in an ectopic fermentation system with thermophilic bacteria during the aerobic process: performance and microbial community dynamics. Bioresour Technol 281:202–208

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Singh P et al (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673

    Article  CAS  Google Scholar 

  • Singh R, Kapoor V, Kumar V (2012) Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic actinomycetes. Braz J Microbiol 43(4):1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RS, Kaur N, Kennedy JF (2019) Pullulan production from agro-industrial waste and its applications in food industry: a review. Carbohydr Polym 217:46–57

    Article  CAS  PubMed  Google Scholar 

  • Siripong P et al (2019) Improvement of sugar recovery from Sida acuta (Thailand Weed) by NaOH pretreatment and application to bioethanol production. Korean J Chem Eng. https://doi.org/10.1007/s11814-018-0170-1.

    Article  CAS  Google Scholar 

  • Soliman SA, El-Zawahry YA, El-Mougith AA (2013) Fungal biodegradation of agro-industrial waste. In: van de Ven T, Kadla J (eds) Cellulose-biomass conversion. IntechOpen, Croatia

    Google Scholar 

  • Tacin MV et al (2019) Biotechnological valorization of oils from agro-industrial wastes to produce lipase using Aspergillus sp. from Amazon. Biocatal Agric Biotechnol 17:369–378

    Article  Google Scholar 

  • van Kuijk SJA et al (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33(1):191–202

    Article  PubMed  CAS  Google Scholar 

  • Weiland P (2006) Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 6(3):302–309

    Article  CAS  Google Scholar 

  • Yadav M et al (2019a) Biological treatment of lignocellulosic biomass by Chaetomium globosporum: process derivation and improved biogas production. Int J Biol Macromol 128:176–183

    Article  CAS  PubMed  Google Scholar 

  • Yadav M et al (2019b) Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation. J Clean Prod 213:75–88

    Article  CAS  Google Scholar 

  • Yusuf M (2017) Agro-industrial waste materials and their recycled value-added applications. In: Martinez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 1–11

    Google Scholar 

  • Zhang W et al (2018) Improved treatment and utilization of rice straw by Coprinopsis cinerea. Appl Biochem Biotechnol 184(2):616–629

    Article  CAS  PubMed  Google Scholar 

  • Zhang B-B et al (2019) Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol 39:541–554. https://doi.org/10.1080/07388551.2019.1577798

    Article  CAS  PubMed  Google Scholar 

  • Zhu YS et al (2011) Lignocellulose degradation, enzyme production and protein enrichment by Trametes versicolor during solid-state fermentation of corn stover. Afr J Biotechnol 10(45):9182–9192

    Article  CAS  Google Scholar 

  • Zhuo S et al (2018) Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. Biotechnol Biofuels 11(146):1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Izyan Wan Azelee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azelee, N.I.W., Manas, N.H.A., Dailin, D.J., Ramli, A.N.M., Shaarani, S.M. (2020). Biological Treatment of Agro-Industrial Waste. In: Zakaria, Z., Boopathy, R., Dib, J. (eds) Valorisation of Agro-industrial Residues – Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-39137-9_3

Download citation

Publish with us

Policies and ethics