Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by distal (i.e., tremor, bradykinesia, and rigidity) and axial motor symptoms (i.e., gait and postural disturbances). Deep brain stimulation (DBS) is a neurosurgical approach that uses electrical current delivered by an implantable pulse generator to modulate neural activity. Although DBS at the subthalamic nucleus (STN) and the internal globus pallidus (GPi) are well established for the treatment of the distal symptoms in PD, long-term studies of axial symptoms show a decline in efficacy with progression of the disease. Currently, there is no pharmacological or neurosurgical treatment available for the axial symptoms of advanced PD. Thus, the design of novel stimulation strategies to treat gait disturbances and postural instability has been investigated, including targets such as the pedunculopontine nucleus (PPN) and the substantia nigra pars reticulata (SNr). Here, we reviewed the current state of understanding regarding the effects of STN/GPi DBS, PPN DBS, and SNr DBS on gait and postural disturbances in PD and the proposed underlying mechanisms of action. The stimulation parameters (i.e., location, frequency, amplitude, and pulse width) and localization criteria for accurate placement of DBS electrodes within each target are discussed. As DBS at spatially distinct subregions of a target impacts the effectiveness of the therapy, electrode misplacement may directly contribute to the mixed results of DBS on the gait and postural disturbances of PD. We highlight the need for future studies to provide details on the specific subregion of the stimulation target to further advance the field.
Keywords
- Parkinson’s disease (PD)
- Deep brain stimulation (DBS)
- Subthalamic nucleus (STN)
- Substantia nigra pars reticulata (SNr), Pedunculopontine nucleus (PPN)
- Gait disturbances
- Postural instability
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
C. Marras, J.C. Beck, J.H. Bower, E. Roberts, B. Ritz, G.W. Ross, et al., Prevalence of Parkinson’s disease across North America. NpjParkinson’s Dis. 4, 1–7 (2018). https://doi.org/10.1038/s41531-018-0058-0
S.L. Kowal, T.M. Dall, R. Chakrabarti, M.V. Storm, A. Jain, The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord. 28(3), 10–15 (2013). https://doi.org/10.1002/mds.25292
J.M. Fearnley, A.J. Lees, Ageing and Parkinson’ disease: substantia nigra regional selectivity. Brain, 114, 2283–2301 (1991)
M. Politis, K. Wu, S. Molloy, P.G. Bain, K.R. Chaudhuri, P. Piccini, Parkinson’s disease symptoms: the patient’s perspective. Mov. Disord. 25(11), 1646–1651 (2010). https://doi.org/10.1002/mds.23135
N. Giladi, T.A. Treves, E.S. Simon, H. Shabtai, Y. Orlov, B. Kandinov, et al., Freezing of gait in patients with advanced Parkinson’s disease. J. Neural Transm. (Vienna) 108, 53–61 (2001)
J.G. Nutt, B.R. Bloem, N. Giladi, M. Hallett, F.B. Horak, A. Nieuwboer, Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10(8), 734–744 (2011). https://doi.org/10.1016/S1474-4422(11)70143-0
B.R. Bloem, J.M. Hausdorff, J.E. Visser, N. Giladi, Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19(8), 871–884 (2004). https://doi.org/10.1002/mds.20115
J.J. Crouse, J.R. Phillips, M. Jahanshahi, A.A. Moustafa, Postural instability and falls in Parkinson’s disease. Rev. Neurosci. 27(5), 549–555 (2016). https://doi.org/10.1515/revneuro-2016-0002
G.K. Wenning, G. Ebersbach, M. Verny, K.R. Chaudhuri, K. Jellinger, A. McKee, et al., Progression of falls in postmortem-confirmed parkinsonian disorders. Mov. Disord. 14(6), 947–950 (1999). https://doi.org/10.1002/1531-8257(199911)14:6<947::AID-MDS1006>3.0.CO;2-O
T. Masud, R.O. Morris, Epidemiology of falls. Age Ageing 30, 3–7 (2001). https://doi.org/10.1093/ageing/30.suppl_3.3
M.W. Creaby, M.H. Cole, Gait characteristics and falls in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 57, 1–8 (2018). https://doi.org/10.1016/j.parkreldis.2018.07.008
C.G. Goetz, B.C. Tilley, S.R. Shaftman, G.T. Stebbins, S. Fahn, P. Martinez-martin, et al., Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008). https://doi.org/10.1002/mds.22340
G. Porras, P. De Deurwaerdere, Q. Li, M. Marti, R. Morgenstern, R. Sohr, et al., L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci. Rep. 4, 3730 (2014). https://doi.org/10.1038/srep03730
P. Hickey, M. Stacy, Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front. Neurosci. 10, 173 (2016). https://doi.org/10.3389/fnins.2016.00173
A. Ramirez-Zamora, J.L. Ostrem, Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease a review. JAMA Neurol. 75(3), 367–372 (2018). https://doi.org/10.1001/jamaneurol.2017.4321
P.P. Perrin, Bilateral subthalamic nucleus stimulation improves balance control in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 76, 780–788 (2005). https://doi.org/10.1136/jnnp.2004.047829
M. Pötter-Nerger, J. Volkmann, Deep brain stimulation for gait and postural symptoms in Parkinson’s disease. Mov. Disord. 28(11), 1609–1615 (2013). https://doi.org/10.1002/mds.25677
S. Vercruysse, W. Vandenberghe, L. Münks, B. Nuttin, H. Devos, A. Nieuwboer, Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J. Neurol. Neurosurg. Psychiatry 85, 872–878 (2014). https://doi.org/10.1136/jnnp-2013-306336
P. Krack, P. Pollak, P. Limousin, D. Hoffmann, J. Xie, A. Benazzouz, A.L. Benabid, Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121(Pt 3), 451–457 (1998). https://doi.org/10.1093/brain/121.3.451
M.C. Rodriguez-Oroz, J.A. Obeso, A.E. Lang, J.L. Houeto, P. Pollak, S. Rehncrona, et al., Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(Pt 10), 2240–2249 (2005). https://doi.org/10.1093/brain/awh571
S. Chabardes, V. Fraix, C. Ardouin, A. Koudsie, P.D. Limousin, D. Ph, Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced parkinson’s disease. N. Engl. J. Med. 349(20), 1925–1934 (2003)
A. Fasano, J. Herzog, E. Seifert, H. Stolze, D. Falk, J. Volkmann, Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov. Disord. 26(5), 844–851 (2011). https://doi.org/10.1002/mds.23583
M.E. McNeely, T. Hershey, M.C. Campbell, S.D. Tabbal, M. Karimi, J.M. Hartlein, et al., Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 82(11), 1250–1255 (2011). https://doi.org/10.1136/jnnp.2010.232900
W.M.M. Schüpbach, N. Chastan, M.L. Welter, J.L. Houeto, V. Mesnage, A.M. Bonnet, et al., Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J. Neurol. Neurosurg. Psychiatry 76(12), 1640–1644 (2005). https://doi.org/10.1136/jnnp.2005.063206
B.F.L. van Nuenen, R.A.J. Esselink, M. Munneke, J.D. Speelman, T. van Laar, B.R. Bloem, Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov. Disord. 23(16), 2404–2406 (2008). https://doi.org/10.1002/mds.21986
D.T.M. Chan, X.L. Zhu, J.H.M. Yeung, V.C.T. Mok, E. Wong, C. Lau, et al., Complications of deep brain stimulation: a collective review. Asian J. Surg. 32(4), 258–263 (2009). https://doi.org/10.1016/S1015-9584(09)60404-8
E.B. Montgomery, Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov. Disord. 27(11), 1387–1391 (2012). https://doi.org/10.1002/mds.25000
A. Benazzouz, S. Breit, A. Koudsie, P. Pollak, Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov. Disord. 17, 145–149 (2002). https://doi.org/10.1002/mds.10156
A.M. Bonnet, Y. Loria, M.H. Saint-Hilaire, F. Lhermitte, Y. Agid, Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37(9), 1539–1542 (1987). https://doi.org/10.1212/WNL.37.9.1539
J. Volkmann, A. Albanese, J. Kulisevsky, A. Tornqvist, J. Houeto, B. Pidoux, et al., Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov. Disord. 24(8), 1154–1161 (2009). https://doi.org/10.1002/mds.22496
F.M. Weaver, K.A. Follett, M. Stern, C.L. Harris, J. Rothlind, E.C. Lai, … R. Simpson, Randomized trial of deep brain stimulation for Parkinson disease (2012)
A. Kishore, R. Rao, S. Krishnan, D. Panikar, G. Sarma, M.P. Sivasanakaran, S. Sarma, Long-term stability of effects of subthalamic stimulation in Parkinson’s disease: Indian experience. Mov. Disord. 25(14), 2438–2444 (2010). https://doi.org/10.1002/mds.23269
A. Merola, M. Zibetti, S. Angrisano, L. Rizzi, V. Ricchi, C.A. Artusi, et al., Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain J. Neurol. 134(Pt 7), 2074–2084 (2011). https://doi.org/10.1093/brain/awr121
E. Moro, A.M. Lozano, P. Pollak, Y. Agid, S. Rehncrona, J. Volkmann, et al., Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov. Disord. 25(5), 578–586 (2010b). https://doi.org/10.1002/mds.22735
A. Castrioto, A.M. Lozano, Y.Y. Poon, A.E. Lang, M. Fallis, E. Moro, Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch. Neurol. 68(12), 1550–1556 (2011). https://doi.org/10.1001/archneurol.2011.182
M. Zibetti, A. Merola, L. Rizzi, V. Ricchi, S. Angrisano, Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov. Disord. 26(13), 2327–2334 (2011). https://doi.org/10.1002/mds.23903
E.E. Benarroch, Implications of subthalamic nucleus and its connections stimulation, 1991–1996 (2008)
C. Hamani, E. Moro, A.M. Lozano, The pedunculopontine nucleus as a target for deep brain stimulation. J. Neural Transm. 118, 1461–1468 (2011). https://doi.org/10.1007/s00702-010-0547-8
J.M. Shine, E. Matar, P.B. Ward, S.J. Bolitho, M. Gilat, M. Pearson, et al., Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain 136, 1204–1215 (2018). https://doi.org/10.1093/brain/awt049
P.A. Pahapill, A.M. Lozano, The pedunculopontine nucleus and Parkinson’s disease, 1767–1783 (2000)
A. Abosch, S. Kapur, A.E. Lang, D. Hussey, E. Sime, J. Miyasaki, et al., Stimulation of the subthalamic nucleus in Parkinson’s disease does not produce striatal dopamine release. Neurosurgery 53(5), 1095–1102 (2003). https://doi.org/10.1227/01.NEU.0000088662.69419.1B
C.H. Tai, M.K. Pan, J.J. Lin, C.S. Huang, Y.C. Yang, C.C. Kuo, Subthalamic discharges as a causal determinant of parkinsonian motor deficits. Ann. Neurol. 72(3), 464–476 (2012). https://doi.org/10.1002/ana.23618
A. Eusebio, W. Thevathasan, L. Doyle Gaynor, A. Pogosyan, E. Bye, T. Foltynie, et al., Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J. Neurol. Neurosurg. Psychiatry 82(5), 569–573 (2011). https://doi.org/10.1136/jnnp.2010.217489
J. Kahan, L. Mancini, M. Urner, K. Friston, M. Hariz, E. Holl, et al., Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease. PLoS One 7(12), e50270 (2012). https://doi.org/10.1371/journal.pone.0050270
A. Parent, L.N. Hazrati, Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res. Rev. 20(1), 128–154 (1995). https://doi.org/10.1016/0165-0173(94)00008-D
B.R. Aravamuthan, K.A. Muthusamy, J.F. Stein, T.Z. Aziz, H. Johansen-Berg, Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. NeuroImage 37(3), 694–705 (2007). https://doi.org/10.1016/j.neuroimage.2007.05.050
H.M. Khoo, H. Kishima, K. Hosomi, T. Maruo, N. Tani, S. Oshino, et al., Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Mov. Disord. 29(2), 270–274 (2014). https://doi.org/10.1002/mds.25810
E.L. Johnsen, N. Sunde, P.H. Mogensen, K. Østergaard, MRI verified STN stimulation site – gait improvement and clinical outcome. Eur. J. Neurol. 18, 746–753 (2010). https://doi.org/10.1111/j.1468-1331.2010.02962.x
L. Mallet, M. Schupbach, K. N’Diaye, P. Remy, E. Bardinet, V. Czernecki, et al., Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc. Natl. Acad. Sci. 104(25), 10661–10666 (2007). https://doi.org/10.1073/pnas.0610849104
B. Bejjani, P. Damier, I. Arnulf, A.M. Bonnet, M. Vidailhet, D. Dormont, et al., Pallidal stimulation for Parkinson’s disease: two targets? Neurology 49(6), 1564–1569 (1997). https://doi.org/10.1212/WNL.49.6.1564
P. Krystkowiak, J.D. Guieu, Chronic bilateral pallidal stimulation and levodopa do not improve gait in the same way in Parkinson’s disease: a study using a video motion analysis system. J. Neurol. 248(11), 944–949 (2001)
C. Moreau, STN-DBS frequency effects on freezing of gait in advanced Parkinson disease (2008)
S. Vallabhajosula, I.U. Haq, N. Hwynn, G. Oyama, M. Okun, M.D. Tillman, C.J. Hass, Brain stimulation low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: a quantitative study. Brain Stimul. 8(1), 64–75 (2015). https://doi.org/10.1016/j.brs.2014.10.011
T. Xie, U.J. Kang, P. Warnke, Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83(10), 1015–1017 (2012). https://doi.org/10.1136/jnnp-2011-302091
V. Ricchi, M. Zibetti, S. Angrisano, A. Merola, N. Arduino, C.A. Artusi, et al., Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimul. 5(3), 388–392 (2012). https://doi.org/10.1016/j.brs.2011.07.001
M.D. Mendonça, R. Barbosa, A. Seromenho-Santos, C. Reizinho, P. Bugalho, R. Miguel, et al., Early use of 80 Hz subthalamic stimulation in Parkinson’s disease as an alternative for High-frequency stimulation induced gait changes and postural instability. Brain Stimul. 11(3), 620–622 (2018). https://doi.org/10.1016/j.brs.2017.12.005
C. Sidiropoulos, R. Walsh, C. Meaney, Y.Y. Poon, M. Fallis, E. Moro, Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. J. Neurol. 260(9), 2306–2311 (2013). https://doi.org/10.1007/s00415-013-6983-2
N.A. Hamid, R.D. Mitchell, P. Mocroft, G.W.M. Westby, J. Milner, H. Pall, Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J. Neurol. Neurosurg. Psychiatry 76(3), 409–414 (2005). https://doi.org/10.1136/jnnp.2003.032029
J. Guridi, M.C. Rodriguez-Oroz, A.M. Lozano, E. Moro, A. Albanese, B. Nuttin, et al., Targeting the basal ganglia for deep brain stimulation in Parkinson’s disease. Neurology 55(12 Suppl 6), S21–S28 (2000)
E. Cuny, D. Guehl, P. Burbaud, C. Gross, V. Dousset, A. Rougier, Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J. Neurosurg. 97(3), 591–597 (2002). https://doi.org/10.3171/jns.2002.97.3.0591
W.D. Hutchison, R.J. Allan, H. Opitz, R. Levy, J.O. Dostrovsky, A.E. Lang, A.M. Lozano, Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann. Neurol. 44(4), 622–628 (1998). https://doi.org/10.1002/ana.410440407
A. Moran, I. Bar-Gad, H. Bergman, Z. Israel, Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov. Disord. 21(9), 1425–1431 (2006). https://doi.org/10.1002/mds.20995
H.J. Lee, W.W. Lee, S.K. Kim, H. Park, H.S. Jeon, H.B. Kim, et al., Tremor frequency characteristics in Parkinson’s disease under resting-state and stress-state conditions. J. Neurol. Sci. 362, 272–277 (2016). https://doi.org/10.1016/j.jns.2016.01.058
A. Zaidel, A. Spivak, B. Grieb, H. Bergman, Z. Israel, Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 133(Pt 7), 2007–2021 (2010). https://doi.org/10.1093/brain/awq144
M. Bin-Mahfoodh, C. Hamani, E. Sime, A.M. Lozano, Longevity of batteries in internal pulse generators used for deep brain stimulation. Stereotact. Funct. Neurosurg. 80(1–4), 56–60 (2003). https://doi.org/10.1159/000075161
T. Xie, M. Padmanaban, L. Bloom, E. MacCracken, B. Bertacchi, A. Dachman, P. Warnke, Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl. Neurodegener. 6, 13 (2017). https://doi.org/10.1186/s40035-017-0083-7
E. Garcia-Rill, The pedunculopontine nucleus. Prog. Neurobiol. 36(5), 363–389 (1991)
K.A. Muthusamy, B.R. Aravamuthan, M.L. Kringelbach, N. Jenkinson, N.L. Voets, H. Johansen-Berg, et al., Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J. Neurosurg. 107(4), 814–820 (2007). https://doi.org/10.3171/JNS-07/10/0814
P.M. Schweder, C. Joint, P.C. Hansen, A.L. Green, G. Quaghebeur, T.Z. Aziz, Chronic pedunculopontine nucleus stimulation restores functional connectivity. Neuroreport 21, 1065–1068 (2010). https://doi.org/10.1097/WNR.0b013e32833ce607
N.I. Bohnen, M.L.T.M. Müller, R.A. Koeppe, S.A. Studenski, M.A. Kilbourn, K.A. Frey, R.L. Albin, History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20), 1670–1676 (2009). https://doi.org/10.1212/WNL.0b013e3181c1ded6
N.I. Bohnen, K.A. Frey, S. Studenski, V. Kotagal, R.A. Koeppe, P.J.H. Scott, et al., Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81(18), 1611–1616 (2013). https://doi.org/10.1212/WNL.0b013e3182a9f558
E.C. Hirsch, A.M. Graybiel, C. Duyckaerts, F. Javoy-Agid, Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. USA 84(16), 5976–5980 (1987)
C. Karachi, D. Grabli, F.A. Bernard, D. Tandé, N. Wattiez, H. Belaid, et al., Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Investig. 120(8), 2745–2754 (2010). https://doi.org/10.1172/JCI42642
D. Grabli, C. Karachi, E. Folgoas, M. Monfort, D. Tande, S. Clark, et al., Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J. Neurosci. 33(29), 11986–11993 (2013). https://doi.org/10.1523/JNEUROSCI.1568-13.2013
W. Thevathasan, E. Moro, What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson’s disease? Neurobiol. Dis. 128, 67–74 (2018). https://doi.org/10.1016/j.nbd.2018.06.014
A. Stefani, A.M. Lozano, A. Peppe, P. Stanzione, S. Galati, D. Tropepi, et al., Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130, 1596–1607 (2007). https://doi.org/10.1093/brain/awl346
E. Moro, C. Hamani, Y. Poon, T. Al-khairallah, O. Dostrovsky, W.D. Hutchison, A.M. Lozano, Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133(Pt 1), 215–224 (2010a). https://doi.org/10.1093/brain/awp261
V. Fraix, L. Goetz, C. Ardouin, J. Yelnik, M.U. Ferraye, B. Debu, et al., Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(Pt 1), 205–214 (2010). https://doi.org/10.1093/brain/awp229
S. Khan, S.S. Gill, L. Mooney, S. Khan, Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78(14), 1090–1095 (2012). https://doi.org/10.1212/WNL.0b013e31824e8e96
M. Welter, A. Demain, C. Ewenczyk, PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J. Neurol. 262, 1515–1525 (2015). https://doi.org/10.1007/s00415-015-7744-1
Z.W. Zhang, Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Elsevier (2015) https://doi.org/10.1016/j.neulet.2015.06.006
N. Chastan, G.W.M. Westby, J. Yelnik, E. Bardinet, M.C. Do, Y. Agid, M.L. Welter, Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132(1), 172–184 (2009). https://doi.org/10.1093/brain/awn294
D. Weiss, M. Walach, C. Meisner, M. Fritz, M. Scholten, S. Breit, et al., Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 136, 2098–2108 (2013). https://doi.org/10.1093/brain/awt122
K. Takakusaki, T. Habaguchi, J. Ohtinata-Sugimoto, K. Saitoh, T. Sakamoto, Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119, 293–308 (2003). https://doi.org/10.1016/S0306-4522(03)00095-2
G.C. McConnell, W.M. Grill, Stimulation location within the substantia nigra pars reticulata differentially modulates gait in hemiparkinsonian rats. In Proceedings of the 6 th International IEEE EMBS Conference on Neural Engineering, San Diego, CA, (2013)
S.A. Shimamoto, P.S. Larson, J.L. Ostrem, G.A. Glass, R.S. Turner, P.A. Starr, Physiological identification of the human pedunculopontine nucleus. J. Neurol. Neurosurg. Psychiatry 81, 80–86 (2010). https://doi.org/10.1136/jnnp.2009.179069
M. Weinberger, C. Hamani, W.D. Hutchison, E. Moro, A.M. Lozano, J.O. Dostrovsky, Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp. Brain Res. 188(2), 165–174 (2008). https://doi.org/10.1007/s00221-008-1349-1
H. Strumpf, T. Noesselt, M.A. Schoenfeld, J. Voges, P. Panther, J. Kaufmann, et al., Deep brain stimulation of the pedunculopontine tegmental nucleus (PPN) influences visual contrast sensitivity in human observers. PLoS One 11(5), e0155206 (2016). https://doi.org/10.1371/journal.pone.0155206
K. Takakusaki, K. Saitoh, H. Harada, M. Kashiwayanagi, Role of basal ganglia – brainstem pathways in the control of motor behaviors. Neurosci. Res. 50, 137–151 (2004). https://doi.org/10.1016/j.neures.2004.06.015
T. Moriizumi, Y. Nakamura, H. Tokuno, Y. Kitao, M. Kudo, Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Exp. Brain Res. 71(2), 298–306 (1988). https://doi.org/10.1007/BF00247490
Y.H. Fu, Y. Yuan, G. Halliday, Z. Rusznák, C. Watson, G. Paxinos, A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct. Funct. 217(2), 591–612 (2012). https://doi.org/10.1007/s00429-011-0349-2
A.C. Sutton, W. Yu, M.E. Calos, A.B. Smith, A. Ramirez-zamora, E.S. Molho, et al., Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J. Neurophysiol. 109, 363–374 (2013). https://doi.org/10.1152/jn.00311.2012
T. Wichmann, M.A. Kliem, M.R. Delong, Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp. Neurol. 424, 410–424 (2001). https://doi.org/10.1006/exnr.2000.7572
D. Weiss, Effects of subthalamic and nigral stimulation on gait kinematics in Parkinson’s disease. Front. Neurol. 8(October), 1–8 (2017). https://doi.org/10.3389/fneur.2017.00543
J.M. Henderson, D. Stanic, D. Tomas, J. Patch, M.K. Horne, D. Bourke, D.I. Finkelstein, Postural changes after lesions of the substantia nigra pars reticulata in hemiparkinsonian monkeys. Behav. Brain Res. 160, 267–276 (2005). https://doi.org/10.1016/j.bbr.2004.12.008
G. Du, M.M. Lewis, C. Sica, L. He, J.R. Connor, L. Kong, et al., Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson’s patients. Mov. Disord. 33(9), 1423–1431 (2018). https://doi.org/10.1002/mds.27318
C.R. Camalier, P.E. Konrad, C.E. Gill, C. Kao, M.R. Remple, H.M. Nasr, et al., Methods for surgical targeting of the. STN in early-stage Parkinson’s disease 5(March), 1–6 (2014). https://doi.org/10.3389/fneur.2014.00025
S. Mrakic-sposta, S. Marceglia, M. Egidi, G. Carrabba, P. Rampini, M. Locatelli, et al., Extracellular spike microrecordings from the subthalamic area in Parkinson’s disease. J. Clin. Neurosci. 15, 559–567 (2008). https://doi.org/10.1016/j.jocn.2007.02.091
S. Breit, A. Martin, L. Lessmann, D. Cerkez, T. Gasser, J.B. Schulz, Bilateral changes in neuronal activity of the basal ganglia in the unilateral 6-hydroxydopamine rat model. J. Neurosci. Sci. 86(6), 1388–1396 (2008). https://doi.org/10.1002/jnr.21588
Y. Wang, Q. Jun, J. Liu, U. Ali, Z. Hua, Y. Ping, et al., Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson’s disease. Brain Res. 1324, 54–63 (2010). https://doi.org/10.1016/j.brainres.2010.02.008
H. Li, G.C. McConnell, Microstimulation evoked neuronal activity in the substantia nigra pars reticulata in anesthetized rats. Brain Stimul. 12(2), e66–e68 (2019)
D.A. Nathan, S. Center, C.y. Wu, W. Keller, An implantable synchronous pacemaker for the long term correction of complete heart block. Am. J. Cardiol. 11(3), 362–367 (1963). https://doi.org/10.1016/0002-9149(63)90130-9
B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S.N. Haber, Z. Israel, et al., Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011). https://doi.org/10.1016/j.neuron.2011.08.023
F.J. Santos, R.M. Costa, F. Tecuapetla, Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72, 197–198 (2011). https://doi.org/10.1016/j.neuron.2011.10.004
M.N. Gasson, S.Y. Wang, T.Z. Aziz, J.F. Stein, K. Warwick, Towards a demand driven deep-brain stimulator for the treatment of movement disorders. In 3rd IEE International Seminar on Medical Applications of Signal Processing (2005), https://doi.org/10.1049/ic:20050336
D. Graupe, I. Basu, D. Tuninetti, P. Vannemreddy, K.V. Slavin, Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol. Res. 32(9), 899–904 (2010). https://doi.org/10.1179/016164110X12767786356354
M. Cassidy, P. Mazzone, A. Oliviero, A. Insola, P. Tonali, V. Di Lazzaro, P. Brown, Movement-related changes in synchronization in the human basal ganglia. Brain 125(Pt 6), 1235–1246 (2002). https://doi.org/10.1093/brain/awf135
S. Little, A. Pogosyan, A.A. Kuhn, P. Brown, Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp. Neurol. 236(2), 383–388 (2012). https://doi.org/10.1016/j.expneurol.2012.04.024
T. Mera, J.L. Vitek, J.L. Alberts, J.P. Giuffrida, Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. J. Neurosci. Methods 198(2), 280–286 (2011). https://doi.org/10.1016/j.jneumeth.2011.03.019
C.R. Butson, S.E. Cooper, J.M. Henderson, B. Wolgamuth, C.C. McIntyre, Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage 54(3), 2096–2104 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.059
A. Eusebio, H. Cagnan, P. Brown, Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease? Front. Integr. Neurosci. 6, 47 (2012). https://doi.org/10.3389/fnint.2012.00047
L.A. Johnson, S.D. Nebeck, A. Muralidharan, M.D. Johnson, K.B. Baker, J.L. Vitek, Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate – is beta enough? Brain Stimul. 9(6), 892–896 (2016). https://doi.org/10.1016/j.brs.2016.06.051
G. Kleiner-Fisman, D.N. Fisman, E. Sime, J.A. Saint-Cyr, A.M. Lozano, A.E. Lang, Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J. Neurosurg. 99(3), 489–495 (2003). https://doi.org/10.3171/jns.2003.99.3.0489
E. Ryapolova-Webb, P. Afshar, S. Stanslaski, T. Denison, C. De Hemptinne, K. Bankiewicz, P.A. Starr, Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. J. Neural Eng. 11(1), 016009 (2014). https://doi.org/10.1088/1741-2560/11/1/016009
P. Wen, M. Li, H. Xiao, R. Ding, H. Chen, J. Chang, et al., Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci. Lett. 600, 62–68 (2015). https://doi.org/10.1016/j.neulet.2015.06.006
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Li, H., McConnell, G.C. (2020). Deep Brain Stimulation for Gait and Postural Disturbances in Parkinson’s Disease. In: Vinjamuri, R. (eds) Advances in Motor Neuroprostheses. Springer, Cham. https://doi.org/10.1007/978-3-030-38740-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-38740-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38739-6
Online ISBN: 978-3-030-38740-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)