Skip to main content
Log in

A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The three main dopamine cell groups of the brain are located in the substantia nigra (A9), ventral tegmental area (A10), and retrorubral field (A8). Several subdivisions of these cell groups have been identified in rats and humans but have not been well described in mice, despite the increasing use of mice in neurodegenerative models designed to selectively damage A9 dopamine neurons. The aim of this study was to determine whether typical subdivisions of these dopamine cell groups are present in mice. The dopamine neuron groups were analysed in 15 adult C57BL/6J mice by anatomically localising tyrosine hydroxylase (TH), dopamine transporter protein (DAT), calbindin, and the G-protein-activated inward rectifier potassium channel 2 (GIRK2) proteins. Measurements of the labeling intensity, neuronal morphology, and the proportion of neurons double-labeled with TH, DAT, calbindin, or GIRK2 were used to differentiate subregions. Coronal maps were prepared and reconstructed in 3D. The A8 cell group had the largest dopamine neurons. Five subregions of A9 were identified: the reticular part with few dopamine neurons, the larger dorsal and smaller ventral dopamine tiers, and the medial and lateral parts of A9. The latter has groups containing some calbindin-immunoreactive dopamine neurons. The greatest diversity of dopamine cell types was identified in the seven subregions of A10. The main dopamine cell groups in the mouse brain are similar in terms of diversity to those observed in rats and humans. These findings are relevant to models using mice to analyse the selective vulnerability of different types of dopamine neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3n:

Oculomotor nerve

AU:

Arbitrary unit

CLi:

Caudal linear nucleus of the raphe

CLV:

Caudolateroventral region of A9

cp:

Cerebral peduncle

cSNC-SNR:

Caudal part of the substantia nigra pars compacta and pars reticulata

DAB:

3,3′-diaminobenzidine

DAPI:

4′-6-diamidino-2-phenylindole

DAT:

Dopamine transporter

DBH:

Dopamine β-hydroxylase

dmSNC:

Dorsomedial portion of the substantia nigra pars compacta

DR:

Dorsal raphe nucleus

fr:

Fasciculus retroflexus

GIRK2:

G-protein-activated inwardly rectifying potassium channel 2

IF:

Interfascicular nucleus

IP:

Interpeduncular nucleus

lSNC:

Lateral part of the substantia nigra pars compacta

ml:

Medial lemniscus

mlf:

Medial longitudinal fasciculus

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MT:

Medial terminal nucleus of the optic tract

mtg:

Mammillotegmental tract

ns:

Nigrostriatal bundle

PaP:

Parapeduncular nucleus

PBP:

Parabrachial pigmented nucleus

PIF:

Parainterfascicular nucleus

pm:

Principal mammillary tract

PN:

Paranigral nucleus

PSTh:

Parasubthalamic nucleus

RLi:

Rostral linear nucleus

RMD:

Rostromediodorsal region of A9

ROI:

Region of interest

RRF:

Retrorubral field

rSNC:

Rostral region of the substantia nigra pars compacta

scp:

Superior cerebellar peduncle

SN:

Substantia nigra

SNCD:

Substantia nigra compact part dorsal tier

SNCL:

Substantia nigra compact part lateral tier

SNCM:

Substantia nigra compact part medial tier

SNCV:

Substantia nigra compact part ventral tier

SNL:

Substantia nigra pars lateralis

SNR:

Substantia nigra reticular part

SP:

Substance P

TH:

Tyrosine hydroxylase

ts:

Tectospinal tract

VTA:

Ventral tegmental area

VTAR:

Ventral tegmental area rostral part

vtgx:

Ventral tegmental decussation

xscp:

Decussation of the superior cerebellar peduncle

References

  • Afonso-Oramas D, Cruz-Muros I, Alvarez de la Rosa D, Abreu P, Giráldez T, Castro-Hernández J, Salas-Hernández J, Lanciego JL, Rodríguez M, González-Hernández T (2009) Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson’s disease. Neurobiol Dis 36(3):494–508

    Article  PubMed  CAS  Google Scholar 

  • Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res Dev Brain Res 103(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  Google Scholar 

  • Bosker FJ, Klompmakers A, Westenberg HGM (1997) Postsynaptic 5-ht1a receptors mediate 5-hydroxytryptamine release in the amygdala through a feedback to the caudal linear raphe. Eur J Pharmacol 333(2–3):147–157

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56(196):1–28

    PubMed  CAS  Google Scholar 

  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14(13):1709–1725

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Muros I, Afonso-Oramas D, Abreu P, Perez-Delgado MM, Rodriguez M, Gonzalez-Hernandez T (2009) Aging effects on the dopamine transporter expression and compensatory mechanisms. Neurobiol Aging 30(6):973–986

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399

    Article  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  • Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Loughlin SE (1995) Substania nigra. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, London, pp 215–237

    Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987) The neostriatal mosaic: II Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7(12):3915–3934

    PubMed  CAS  Google Scholar 

  • German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: Sparing of calbindin-d28k-containing cells. Ann N Y Acad Sci 648:42–62

    Article  PubMed  CAS  Google Scholar 

  • González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421(1):107–135

    Article  PubMed  Google Scholar 

  • González-Hernández T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Pérez-Delgado M, Rodríguez M (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479(2):198–215

    Article  PubMed  Google Scholar 

  • Haber SN, Ryoo H, Cox C, Lu W (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the d2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362(3):400–410

    Article  PubMed  CAS  Google Scholar 

  • Halliday GM (2004) Substania nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 449–463

    Chapter  Google Scholar 

  • Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252(4):423–445

    Article  PubMed  CAS  Google Scholar 

  • Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255

    Article  PubMed  Google Scholar 

  • Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160(10):1726–1739

    Article  PubMed  Google Scholar 

  • Hökfelt T, Martensson A, Björklund A, Kleinau S, Goldstein M (1984). In: Björklund A, Hökfelt T (ed) Classical transmitters in the CNS, part I, handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam, pp 277–386

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    PubMed  CAS  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and Parkinsonian monkeys. Neuroreport 2(10):601–604

    Article  PubMed  CAS  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  PubMed  CAS  Google Scholar 

  • Liang CL, Sinton CM, German DC (1996) Midbrain dopaminergic neurons in the mouse: co-localization with calbindin-d28k and calretinin. Neuroscience 75(2):523–533

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK (1995) Single section and disector counts in evaluating neuronal loss from the substantia nigra in patients with Parkinson’s disease. Neuropathol Appl Neurobiol 21(4):341–343

    Article  PubMed  CAS  Google Scholar 

  • Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4):289–297

    Article  PubMed  CAS  Google Scholar 

  • Marchand R, Poirier LJ (1983) Isthmic origin of neurons of the rat substantia nigra. Neuroscience 9(2):373–381

    Article  PubMed  CAS  Google Scholar 

  • McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364(1):121–150

    Article  PubMed  CAS  Google Scholar 

  • Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and smi-32. J Comp Neurol 443(1):86–103

    Article  PubMed  CAS  Google Scholar 

  • Ng L, Bernard A, Lau C, Overly CC, Dong HW, Kuan C, Pathak S, Sunkin SM, Dang C, Bohland JW, Bokil H, Mitra PP, Puelles L, Hohmann J, Anderson DJ, Lein ES, Jones AR, Hawrylycz M (2009) An anatomic gene expression atlas of the adult mouse brain. Nat Neurosci 12(3):356–362

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (a10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165

    PubMed  CAS  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559

    Article  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Pakkenberg B, Moller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54(1):30–33

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger RH (1989) The ef-hand family of calcium-modulated proteins. Trends Neurosci 12(11):462–467

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  • Schein JC, Hunter DD, Roffler-Tarlov S (1998) Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 204(2):432–450

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ, González A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353

    Article  PubMed  CAS  Google Scholar 

  • Thompson L, Barraud P, Andersson E, Kirik D, Björklund A (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25(27):6467–6477

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-d28k. Brain Res 526(2):303–307

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Vadasz C (2001) The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behav Genet 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Australian Research Council Thinking Systems Initiative (TS0669860) and Linkage Infrastructure Grant (#LE100100074). GP is an NHMRC (National Health & Medical Research Council) Australia Fellow (grant #568605) and GMH is a NHMRC Senior Principal Research Fellow (grant #630434).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Additional information

Y. Fu and Y. Yuan have made an equal contribution to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Yuan, Y., Halliday, G. et al. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct Funct 217, 591–612 (2012). https://doi.org/10.1007/s00429-011-0349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0349-2

Keywords

Navigation