Skip to main content

Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer

  • Chapter
  • First Online:
Proteostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1233))

Abstract

Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Veen AG, Ploegh HL (2012) Ubiquitin-like proteins. Annu Rev Biochem 81:323–357. https://doi.org/10.1146/annurev-biochem-093010-153308

    Article  PubMed  CAS  Google Scholar 

  2. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  CAS  PubMed  Google Scholar 

  3. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503

    Article  CAS  PubMed  Google Scholar 

  4. Cappadocia L, Lima CD (2018) Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev 118:889–918. https://doi.org/10.1021/acs.chemrev.6b00737

    Article  CAS  PubMed  Google Scholar 

  5. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157. https://doi.org/10.1146/annurev-biochem-060815-014922

    Article  CAS  PubMed  Google Scholar 

  6. Pichler A, Fatouros C, Lee H, Eisenhardt N (2017) SUMO conjugation – a mechanistic view. Biomol Concepts 8:13–36. https://doi.org/10.1515/bmc-2016-0030

    Article  CAS  PubMed  Google Scholar 

  7. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  8. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586. https://doi.org/10.1038/ncb3358

    Article  CAS  PubMed  Google Scholar 

  9. Clague MJ, Urbé S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20(6):338–352. https://doi.org/10.1038/s41580-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  10. Kunz K, Piller T, Müller S (2018) SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci 131:jcs211904. https://doi.org/10.1242/jcs.211904

    Article  PubMed  CAS  Google Scholar 

  11. Gong L, Yeh ETH (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281:15869–15877. https://doi.org/10.1074/jbc.M511658200

    Article  CAS  PubMed  Google Scholar 

  12. Schulz S, Chachami G, Kozaczkiewicz L et al (2012) Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep 13:930–938. https://doi.org/10.1038/embor.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385. https://doi.org/10.1146/annurev-biochem-061909-093311

    Article  CAS  PubMed  Google Scholar 

  14. Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42:873–886. https://doi.org/10.1016/j.tibs.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin–RING ligases. Nat Rev Mol Cell Biol 16:30–44. https://doi.org/10.1038/nrm3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  CAS  PubMed  Google Scholar 

  17. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  18. Ciechanover A (2017) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract Res Clin Haematol 30:341–355. https://doi.org/10.1016/j.beha.2017.09.001

    Article  PubMed  Google Scholar 

  19. Flick K, Raasi S, Zhang H et al (2006) A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat Cell Biol 8:509–515. https://doi.org/10.1038/ncb1402

    Article  CAS  PubMed  Google Scholar 

  20. Le Cam L, Linares LK, Paul C et al (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127:775–788. https://doi.org/10.1016/j.cell.2006.09.031

    Article  PubMed  CAS  Google Scholar 

  21. Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23:523–529. https://doi.org/10.1016/j.semcdb.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee BL, Singh A, Mark Glover JN et al (2017) Molecular basis for K63-linked ubiquitination processes in double-strand DNA break repair: a focus on kinetics and dynamics. J Mol Biol 429:3409–3429. https://doi.org/10.1016/j.jmb.2017.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu X, Karin M (2015) Emerging roles of Lys63-linked polyubiquitylation in immune responses. Immunol Rev 266:161–174. https://doi.org/10.1111/imr.12310

    Article  CAS  PubMed  Google Scholar 

  24. Schmukle AC, Walczak H (2012) No one can whistle a symphony alone – how different ubiquitin linkages cooperate to orchestrate NF-κB activity. J Cell Sci 125:549–559. https://doi.org/10.1242/jcs.091793

    Article  CAS  PubMed  Google Scholar 

  25. Wickliffe KE, Williamson A, Meyer H-J et al (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21:656–663. https://doi.org/10.1016/j.tcb.2011.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25:4877–4887. https://doi.org/10.1038/sj.emboj.7601360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rittinger K, Ikeda F (2017) Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol 7. https://doi.org/10.1098/rsob.170026

  28. Spit M, Rieser E, Walczak H (2019) Linear ubiquitination at a glance. J Cell Sci 132:jcs208512. https://doi.org/10.1242/jcs.208512

    Article  PubMed  CAS  Google Scholar 

  29. Haglund K, Sigismund S, Polo S et al (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466. https://doi.org/10.1038/ncb983

    Article  CAS  PubMed  Google Scholar 

  30. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598–604. https://doi.org/10.1016/j.tibs.2003.09.005

  31. Sadowski M, Suryadinata R, Tan AR et al (2012) Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64:136–142. https://doi.org/10.1002/iub.589

    Article  CAS  PubMed  Google Scholar 

  32. Hendriks IA, Vertegaal ACO (2016) A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 17:581–595. https://doi.org/10.1038/nrm.2016.81

    Article  CAS  PubMed  Google Scholar 

  33. Hendriks IA, Lyon D, Young C et al (2017) Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 24:325–336. https://doi.org/10.1038/nsmb.3366

    Article  CAS  PubMed  Google Scholar 

  34. Tatham MH, Geoffroy M-C, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546. https://doi.org/10.1038/ncb1716

    Article  CAS  PubMed  Google Scholar 

  35. Lallemand-Breitenbach V, Jeanne M, Benhenda S et al (2008) Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10:547–555. https://doi.org/10.1038/ncb1717

    Article  CAS  PubMed  Google Scholar 

  36. Sun H, Hunter T (2012) PolySUMO-binding proteins identified through a string search. J Biol Chem. https://doi.org/10.1074/jbc.M112.410985

  37. Armstrong AA, Mohideen F, Lima CD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483:59–63. https://doi.org/10.1038/nature10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garvin AJ, Morris JR (2017) SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc B Biol Sci 372. https://doi.org/10.1098/rstb.2016.0281

  39. Neyret-Kahn H, Benhamed M, Ye T et al (2013) Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res 23:1563–1579. https://doi.org/10.1101/gr.154872.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cossec J-C, Theurillat I, Chica C et al (2018) SUMO safeguards somatic and pluripotent cell identities by enforcing distinct chromatin states. Cell Stem Cell 23:742–757.e8. https://doi.org/10.1016/j.stem.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Rosonina E, Akhter A, Dou Y et al (2017) Regulation of transcription factors by sumoylation. Transcription 8:220–231. https://doi.org/10.1080/21541264.2017.1311829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tempé D, Vives E, Brockly F et al (2014) SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 33:921–927. https://doi.org/10.1038/onc.2013.4

    Article  PubMed  CAS  Google Scholar 

  43. Chymkowitch P, AN P, Aanes H et al (2015) Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 25:897–906. https://doi.org/10.1101/gr.185793.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820. https://doi.org/10.1016/j.cell.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  45. Tempé D, Piechaczyk M, Bossis G (2008) SUMO under stress. Biochem Soc Trans 36:874–878. https://doi.org/10.1042/BST0360874

    Article  PubMed  CAS  Google Scholar 

  46. Seifert A, Schofield P, Barton GJ, Hay RT (2015) Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci Signal 8:rs7–rs7. https://doi.org/10.1126/scisignal.aaa2213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liebelt F, Sebastian RM, Moore CL et al (2019) SUMOylation and the HSF1-regulated chaperone network converge to promote proteostasis in response to heat shock. Cell Rep 26:236–249.e4. https://doi.org/10.1016/j.celrep.2018.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357. https://doi.org/10.1016/j.molcel.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  49. Stankovic-Valentin N, Drzewicka K, König C et al (2016) Redox regulation of SUMO enzymes is required for ATM activity and survival in oxidative stress. EMBO J 35:1312–1329. https://doi.org/10.15252/embj.201593404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stankovic-Valentin N, Melchior F (2018) Control of SUMO and ubiquitin by ROS: signaling and disease implications. Mol Asp Med 63:3–17. https://doi.org/10.1016/j.mam.2018.07.002

    Article  CAS  Google Scholar 

  51. Deshaies RJ, Emberley ED, Saha A (2010) Control of cullin-ring ubiquitin ligase activity by nedd8. Subcell Biochem 54:41–56. https://doi.org/10.1007/978-1-4419-6676-6_4

    Article  CAS  PubMed  Google Scholar 

  52. Xirodimas DP, Saville MK, Bourdon J-C et al (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118:83–97. https://doi.org/10.1016/j.cell.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  53. Watson IR, Blanch A, Lin DCC et al (2006) Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281:34096–34103. https://doi.org/10.1074/jbc.M603654200

    Article  CAS  PubMed  Google Scholar 

  54. Loftus SJ, Liu G, Carr SM et al (2012) NEDDylation regulates E2F-1-dependent transcription. EMBO Rep 13:811–818. https://doi.org/10.1038/embor.2012.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aoki I, Higuchi M, Gotoh Y (2013) NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 32:3954–3964. https://doi.org/10.1038/onc.2012.428

    Article  CAS  PubMed  Google Scholar 

  56. Russell RC, Ohh M (2008) NEDD8 acts as a “molecular switch” defining the functional selectivity of VHL. EMBO Rep 9:486–491. https://doi.org/10.1038/embor.2008.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao F, Cheng J, Shi T, Yeh ETH (2006) Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFκB-dependent transcription. Nat Cell Biol 8:1171–1177. https://doi.org/10.1038/ncb1483

    Article  CAS  PubMed  Google Scholar 

  58. Renaudin X, Guervilly J-H, Aoufouchi S, Rosselli F (2014) Proteomic analysis reveals a FANCA-modulated neddylation pathway involved in CXCR5 membrane targeting and cell mobility. J Cell Sci 127:3546–3554. https://doi.org/10.1242/jcs.150706

    Article  CAS  PubMed  Google Scholar 

  59. Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP (2009) Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10:1132–1139. https://doi.org/10.1038/embor.2009.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahata B, Sundqvist A, Xirodimas DP (2012) Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31:3060–3071. https://doi.org/10.1038/onc.2011.482

    Article  CAS  PubMed  Google Scholar 

  61. Zhang J, Bai D, Ma X et al (2014) hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene 33:246–254. https://doi.org/10.1038/onc.2012.560

    Article  PubMed  CAS  Google Scholar 

  62. El Motiam A, Vidal S, de la Cruz-Herrera CF et al (2019) Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function. FASEB J Off Publ Fed Am Soc Exp Biol 33:643–651. https://doi.org/10.1096/fj.201800341RR

    Google Scholar 

  63. Maghames CM, Lobato-Gil S, Perrin A et al (2018) NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress. Nat Commun 9:4376. https://doi.org/10.1038/s41467-018-06365-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  65. Seeler J-S, Dejean A (2017) SUMO and the robustness of cancer. Nat Rev Cancer 17:184–197. https://doi.org/10.1038/nrc.2016.143

    Article  CAS  PubMed  Google Scholar 

  66. Zhou L, Zhang W, Sun Y, Jia L (2018) Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 44:92–102. https://doi.org/10.1016/j.cellsig.2018.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Niazi S, Purohit M, Niazi JH (2018) Role of p53 circuitry in tumorigenesis: a brief review. Eur J Med Chem 158:7–24. https://doi.org/10.1016/j.ejmech.2018.08.099

    Article  CAS  PubMed  Google Scholar 

  68. Sane S, Rezvani K (2017) Essential ROLES of E3 ubiquitin ligases in p53 regulation. Int J Mol Sci 18. https://doi.org/10.3390/ijms18020442

  69. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27. https://doi.org/10.1016/S0014-5793(97)01480-4

    Article  CAS  PubMed  Google Scholar 

  70. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303. https://doi.org/10.1038/387299a0

    Article  CAS  PubMed  Google Scholar 

  71. Carr MI, Jones SN (2016) Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 5:707–724. https://doi.org/10.21037/tcr.2016.11.75

    Article  CAS  PubMed  Google Scholar 

  72. Scheffner M, Werness BA, Huibregtse JM et al (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  CAS  PubMed  Google Scholar 

  73. Martinez-Zapien D, Ruiz FX, Poirson J et al (2016) Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529:541–545. https://doi.org/10.1038/nature16481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li M, Brooks CL, Wu-Baer F et al (2003) Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975. https://doi.org/10.1126/science.1091362

    Article  CAS  PubMed  Google Scholar 

  75. Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17:86–92. https://doi.org/10.1038/cdd.2009.77

    Article  CAS  PubMed  Google Scholar 

  76. Kruse J-P, Gu W (2009) MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem 284:3250–3263. https://doi.org/10.1074/jbc.M805658200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Laine A, Ronai Z (2007) Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 26:1477–1483. https://doi.org/10.1038/sj.onc.1209924

    Article  CAS  PubMed  Google Scholar 

  78. Abida WM, Nikolaev A, Zhao W et al (2007) FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282:1797–1804. https://doi.org/10.1074/jbc.M609001200

    Article  CAS  PubMed  Google Scholar 

  79. Liu G, Xirodimas DP (2010) NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 29:2252–2261. https://doi.org/10.1038/onc.2009.494

    Article  CAS  PubMed  Google Scholar 

  80. Batuello CN, Hauck PM, Gendron JM et al (2015) Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc Natl Acad Sci U S A 112:1749–1754. https://doi.org/10.1073/pnas.1416656112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodriguez MS, Desterro JMP, Lain S et al (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461. https://doi.org/10.1093/emboj/18.22.6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gostissa M, Hengstermann A, Fogal V et al (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471. https://doi.org/10.1093/emboj/18.22.6462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller S, Berger M, Lehembre F et al (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329

    Article  CAS  PubMed  Google Scholar 

  84. Stehmeier P, Muller S (2009) Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair 8:491–498. https://doi.org/10.1016/j.dnarep.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  85. Kwek SS, Derry J, Tyner AL et al (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20:2587–2599. https://doi.org/10.1038/sj.onc.1204362

    Article  CAS  PubMed  Google Scholar 

  86. Liu X-M, Yang F-F, Yuan Y-F et al (2013) SUMOylation of mouse p53b by SUMO-1 promotes its pro-apoptotic function in ovarian granulosa cells. PLoS One 8:e63680. https://doi.org/10.1371/journal.pone.0063680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashikari D, Takayama K, Tanaka T et al (2017) Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer. Oncogene 36:6272–6281. https://doi.org/10.1038/onc.2017.225

    Article  CAS  PubMed  Google Scholar 

  88. Imbert V, Peyron J-F (2017) NF-κB in hematological malignancies. Biomedicines 5. https://doi.org/10.3390/biomedicines5020027

  89. Seo J, Kim MW, Bae K-H et al (2019) The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol 162:21–40. https://doi.org/10.1016/j.bcp.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  90. Desterro JMP, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IκBα inhibits NF-κB activation. Mol Cell 2:233–239. https://doi.org/10.1016/S1097-2765(00)80133-1

    Article  CAS  PubMed  Google Scholar 

  91. Huang TT, Wuerzberger-Davis SM, Wu Z-H, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576

    Article  CAS  PubMed  Google Scholar 

  92. Noguchi K, Okumura F, Takahashi N et al (2011) TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis 32:995–1004. https://doi.org/10.1093/carcin/bgr068

    Article  CAS  PubMed  Google Scholar 

  93. Colak S, ten Dijke P (2017) Targeting TGF-β signaling in cancer. Trends Cancer 3:56–71. https://doi.org/10.1016/j.trecan.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  94. Budi EH, Duan D, Derynck R (2017) Transforming growth factor-β receptors and smads: regulatory complexity and functional versatility. Trends Cell Biol 27:658–672. https://doi.org/10.1016/j.tcb.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  95. Iyengar PV (2017) Regulation of ubiquitin enzymes in the TGF-β pathway. Int J Mol Sci 18:877. https://doi.org/10.3390/ijms18040877

    Article  PubMed Central  CAS  Google Scholar 

  96. Kavsak P, Rasmussen RK, Causing CG et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6:1365–1375. https://doi.org/10.1016/S1097-2765(00)00134-9

    Article  CAS  PubMed  Google Scholar 

  97. Ebisawa T, Fukuchi M, Murakami G et al (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480. https://doi.org/10.1074/jbc.C100008200

    Article  CAS  PubMed  Google Scholar 

  98. Eichhorn PJA, Rodón L, Gonzàlez-Juncà A et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18:429–435. https://doi.org/10.1038/nm.2619

    Article  CAS  PubMed  Google Scholar 

  99. Xie P, Zhang M, He S et al (2014) The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 5:3733. https://doi.org/10.1038/ncomms4733

    Article  CAS  PubMed  Google Scholar 

  100. He S, Cao Y, Xie P et al (2017) The Nedd8 Non-covalent binding region in the Smurf HECT domain is critical to its ubiquitn ligase function. Sci Rep 7. https://doi.org/10.1038/srep41364

  101. Chanda A, Sarkar A, Bonni S (2018) The SUMO system and TGFβ signaling interplay in regulation of epithelial-mesenchymal transition: implications for cancer progression. Cancers 10. https://doi.org/10.3390/cancers10080264

  102. Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The type I TGF-β receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10:654–664. https://doi.org/10.1038/ncb1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan M, Zhang D, Zhang E et al (2017) SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-βRI. Mol Carcinog 56:2332–2341. https://doi.org/10.1002/mc.22687

    Article  CAS  PubMed  Google Scholar 

  104. Chandhoke AS, Karve K, Dadakhujaev S et al (2016) The ubiquitin ligase Smurf2 suppresses TGFβ-induced epithelial–mesenchymal transition in a sumoylation-regulated manner. Cell Death Differ 23:876–888. https://doi.org/10.1038/cdd.2015.152

    Article  CAS  PubMed  Google Scholar 

  105. Chandhoke AS, Chanda A, Karve K et al (2017) The PIAS3-Smurf2 sumoylation pathway suppresses breast cancer organoid invasiveness. Oncotarget 8:21001–21014. https://doi.org/10.18632/oncotarget.15471

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ikeuchi Y, Dadakhujaev S, Chandhoke AS et al (2014) TIF1γ protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1. J Biol Chem 289:25067–25078. https://doi.org/10.1074/jbc.M114.575878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Long J, Zuo D, Park M (2005) Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem 280:35477–35489. https://doi.org/10.1074/jbc.M504477200

    Article  CAS  PubMed  Google Scholar 

  108. Gudey SK, Sundar R, Heldin C-H et al (2017) Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFβ stimulation in cancer. Oncotarget 8:97703–97726. https://doi.org/10.18632/oncotarget.20097

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xie Y, Liu S, Lu W et al (2014) Slug regulates E-cadherin repression via p19Arf in prostate tumorigenesis. Mol Oncol 8:1355–1364. https://doi.org/10.1016/j.molonc.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun H, Liu Y, Hunter T (2014) Multiple Arkadia/RNF111 structures coordinate its polycomb body association and transcriptional control. Mol Cell Biol 34:2981–2995. https://doi.org/10.1128/MCB.00036-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Müller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70. https://doi.org/10.1093/emboj/17.1.61

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kamitani T, Nguyen HP, Kito K et al (1998) Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273:3117–3120. https://doi.org/10.1074/jbc.273.6.3117

    Article  CAS  PubMed  Google Scholar 

  113. Duprez E, Saurin AJ, Desterro JM et al (1999) SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112:381–393

    CAS  PubMed  Google Scholar 

  114. Sahin U, Ferhi O, Jeanne M et al (2014) Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol 204:931–945. https://doi.org/10.1083/jcb.201305148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weis K, Rambaud S, Lavau C et al (1994) Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76:345–356

    Article  CAS  PubMed  Google Scholar 

  116. de Thé H (2018) Differentiation therapy revisited. Nat Rev Cancer 18:117–127. https://doi.org/10.1038/nrc.2017.103

    Article  PubMed  CAS  Google Scholar 

  117. Ablain J, Rice K, Soilihi H et al (2014) Activation of a promyelocytic leukemia–tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med 20:167–174. https://doi.org/10.1038/nm.3441

    Article  CAS  PubMed  Google Scholar 

  118. Saldana M, VanderVorst K, Berg AL et al (2019) Otubain 1: a non-canonical deubiquitinase with an emerging role in cancer. Endocr Relat Cancer 26:R1–R14. https://doi.org/10.1530/ERC-18-0264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moore MD, Finnerty B, Gray KD et al (2018) Decreased UCHL1 expression as a cytologic biomarker for aggressive behavior in pancreatic neuroendocrine tumors. Surgery 163:226–231. https://doi.org/10.1016/j.surg.2017.04.040

    Article  PubMed  Google Scholar 

  120. Song JS, Yi JM, Cho H et al (2018) Dual loss of USP10 and p14ARF protein expression is associated with poor prognosis in patients with small intestinal adenocarcinoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med 40:1010428318808678. https://doi.org/10.1177/1010428318808678

    Article  CAS  Google Scholar 

  121. Sun J, Li T, Zhao Y et al (2018) USP10 inhibits lung cancer cell growth and invasion by upregulating PTEN. Mol Cell Biochem 441:1–7. https://doi.org/10.1007/s11010-017-3170-2

    Article  CAS  PubMed  Google Scholar 

  122. Tan Y, Zhou G, Wang X et al (2018) USP18 promotes breast cancer growth by upregulating EGFR and activating the AKT/Skp2 pathway. Int J Oncol 53:371–383. https://doi.org/10.3892/ijo.2018.4387

    CAS  PubMed  Google Scholar 

  123. Li Y, Yang Y, Li J et al (2017) USP22 drives colorectal cancer invasion and metastasis via epithelial-mesenchymal transition by activating AP4. Oncotarget 8:32683–32695. https://doi.org/10.18632/oncotarget.15950

    PubMed  PubMed Central  Google Scholar 

  124. Kim D, Hong A, Park HI et al (2017) Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol 232:3664–3676. https://doi.org/10.1002/jcp.25841

    Article  CAS  PubMed  Google Scholar 

  125. Fang C-L, Lin C-C, Chen H-K et al (2018) Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci 109:3438–3449. https://doi.org/10.1111/cas.13789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu W, Wei H, Li K et al (2017) Downregulation of USP32 inhibits cell proliferation, migration and invasion in human small cell lung cancer. Cell Prolif 50. https://doi.org/10.1111/cpr.12343

  127. Chen Y, Pang X, Ji L et al (2018) Reduced expression of deubiquitinase USP33 Is associated with tumor progression and poor prognosis of gastric adenocarcinoma. Med Sci Monit Int Med J Exp Clin Res 24:3496–3505. https://doi.org/10.12659/MSM.908075

    CAS  Google Scholar 

  128. Li C, Huang L, Lu H et al (2018) Expression and clinical significance of ubiquitin-specific-processing protease 34 in diffuse large B-cell lymphoma. Mol Med Rep 18:4543–4554. https://doi.org/10.3892/mmr.2018.9447

    CAS  PubMed  Google Scholar 

  129. Qin T, Li B, Feng X et al (2018) Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. J Exp Clin Cancer Res CR 37:287. https://doi.org/10.1186/s13046-018-0934-9

    Article  CAS  PubMed  Google Scholar 

  130. Xu Y, Zhu M-R, Zhang J-Y et al (2018) Knockdown of ubiquitin-specific peptidase 39 inhibits the malignant progression of human renal cell carcinoma. Mol Med Rep 17:4729–4735. https://doi.org/10.3892/mmr.2018.8421

    CAS  PubMed  Google Scholar 

  131. Fraile JM, Manchado E, Lujambio A et al (2017) USP39 deubiquitinase is essential for KRAS oncogene-driven cancer. J Biol Chem 292:4164–4175. https://doi.org/10.1074/jbc.M116.762757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yuan X, Sun X, Shi X et al (2017) USP39 promotes colorectal cancer growth and metastasis through the Wnt/β-catenin pathway. Oncol Rep 37:2398–2404. https://doi.org/10.3892/or.2017.5454

    Article  CAS  PubMed  Google Scholar 

  133. Guo W, Ma J, Pei T et al (2018) Up-regulated deubiquitinase USP4 plays an oncogenic role in melanoma. J Cell Mol Med 22:2944–2954. https://doi.org/10.1111/jcmm.13603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luo K, Li Y, Yin Y et al (2017) USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J 36:1434–1446. https://doi.org/10.15252/embj.201695669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li X-Y, Wu H-Y, Mao X-F et al (2017) USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein. Biochem Biophys Res Commun 492:48–54. https://doi.org/10.1016/j.bbrc.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  136. Zhan M, Sun X, Liu J et al (2017) Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochem Biophys Res Commun 484:429–434. https://doi.org/10.1016/j.bbrc.2017.01.144

    Article  CAS  PubMed  Google Scholar 

  137. Zeng Q, Li Z, Zhao X et al (2019) Ubiquitin-specific protease 7 promotes osteosarcoma cell metastasis by inducing epithelial-mesenchymal transition. Oncol Rep 41:543–551. https://doi.org/10.3892/or.2018.6835

    CAS  PubMed  Google Scholar 

  138. Yan M, Zhao C, Wei N et al (2018) High expression of ubiquitin-specific protease 8 (USP8) is associated with poor prognosis in patients with cervical squamous cell carcinoma. Med Sci Monit Int Med J Exp Clin Res 24:4934–4943. https://doi.org/10.12659/MSM.909235

    CAS  Google Scholar 

  139. Liu L, Yao D, Zhang P et al (2017) Deubiquitinase USP9X promotes cell migration, invasion and inhibits apoptosis of human pancreatic cancer. Oncol Rep 38:3531–3537. https://doi.org/10.3892/or.2017.6050

    CAS  PubMed  Google Scholar 

  140. Li X, Song N, Liu L et al (2017) USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 8:14866. https://doi.org/10.1038/ncomms14866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou C, Bi F, Yuan J et al (2018) Gain of UBE2D1 facilitates hepatocellular carcinoma progression and is associated with DNA damage caused by continuous IL-6. J Exp Clin Cancer Res CR 37:290. https://doi.org/10.1186/s13046-018-0951-8

    Article  CAS  PubMed  Google Scholar 

  142. Ma X, Zhao J, Yang F et al (2017) Ubiquitin conjugating enzyme E2 L3 promoted tumor growth of NSCLC through accelerating p27kip1 ubiquitination and degradation. Oncotarget 8:84193–84203. https://doi.org/10.18632/oncotarget.20449

    PubMed  PubMed Central  Google Scholar 

  143. Pan Y-H, Yang M, Liu L-P et al (2018) UBE2S enhances the ubiquitination of p53 and exerts oncogenic activities in hepatocellular carcinoma. Biochem Biophys Res Commun 503:895–902. https://doi.org/10.1016/j.bbrc.2018.06.093

    Article  CAS  PubMed  Google Scholar 

  144. Liu L-P, Yang M, Peng Q-Z et al (2017) UBE2T promotes hepatocellular carcinoma cell growth via ubiquitination of p53. Biochem Biophys Res Commun 493:20–27. https://doi.org/10.1016/j.bbrc.2017.09.091

    Article  CAS  PubMed  Google Scholar 

  145. Luo C, Yao Y, Yu Z et al (2017) UBE2T knockdown inhibits gastric cancer progression. Oncotarget 8:32639–32654. https://doi.org/10.18632/oncotarget.15947

    PubMed  PubMed Central  Google Scholar 

  146. Vila IK, Yao Y, Kim G et al (2017) A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy. Cancer Cell 31:208–224. https://doi.org/10.1016/j.ccell.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ullah K, Zubia E, Narayan M et al (2019) Diverse roles of the E2/E3 hybrid enzyme UBE2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 286(11):2018–2034. https://doi.org/10.1111/febs.14708

    Article  CAS  PubMed  Google Scholar 

  148. Jiang X, Li C, Lin B et al (2017) cIAP2 promotes gallbladder cancer invasion and lymphangiogenesis by activating the NF-κB pathway. Cancer Sci 108:1144–1156. https://doi.org/10.1111/cas.13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dornan D, Bheddah S, Newton K et al (2004) COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64:7226–7230. https://doi.org/10.1158/0008-5472.CAN-04-2601

    Article  CAS  PubMed  Google Scholar 

  150. Marine J-C (2012) Spotlight on the role of COP1 in tumorigenesis. Nat Rev Cancer 12:455–464. https://doi.org/10.1038/nrc3271

    Article  CAS  PubMed  Google Scholar 

  151. Michail O, Moris D, Theocharis S, Griniatsos J (2018) Cullin-1 and -2 protein expression in colorectal cancer: correlation with clinicopathological variables. Vivo Athens Greece 32:391–396. https://doi.org/10.21873/invivo.11251

    CAS  Google Scholar 

  152. Zeng R, Tan G, Li W, Ma Y (2018) Increased expression of cullin 3 in nasopharyngeal carcinoma and knockdown inhibits proliferation and invasion. Oncol Res 26:111–122. https://doi.org/10.3727/096504017X14924753593574

    Article  PubMed  PubMed Central  Google Scholar 

  153. Raghu D, Paul PJ, Gulati T et al (2017) E6AP promotes prostate cancer by reducing p27 expression. Oncotarget 8:42939–42948. https://doi.org/10.18632/oncotarget.17224

    Article  PubMed  PubMed Central  Google Scholar 

  154. Paul PJ, Raghu D, Chan A-L et al (2016) Restoration of tumor suppression in prostate cancer by targeting the E3 ligase E6AP. Oncogene 35:6235–6245. https://doi.org/10.1038/onc.2016.159

    Article  CAS  PubMed  Google Scholar 

  155. Gamell C, Gulati T, Levav-Cohen Y et al (2017) Reduced abundance of the E3 ubiquitin ligase E6AP contributes to decreased expression of the INK4/ARF locus in non-small cell lung cancer. Sci Signal 10:eaaf8223. https://doi.org/10.1126/scisignal.aaf8223

    Article  PubMed  CAS  Google Scholar 

  156. Sun C, Tao Y, Gao Y et al (2018) F-box protein 11 promotes the growth and metastasis of gastric cancer via PI3K/AKT pathway-mediated EMT. Biomed Pharmacother Biomedecine Pharmacother 98:416–423. https://doi.org/10.1016/j.biopha.2017.12.088

    Article  CAS  Google Scholar 

  157. Khan M, Muzumdar D, Shiras A (2019) Attenuation of tumor suppressive function of FBXO16 ubiquitin ligase activates Wnt signaling in glioblastoma. Neoplasia N Y N 21:106–116. https://doi.org/10.1016/j.neo.2018.11.005

    Article  CAS  Google Scholar 

  158. Suber TL, Nikolli I, O’Brien ME et al (2018) FBXO17 promotes cell proliferation through activation of Akt in lung adenocarcinoma cells. Respir Res 19:206. https://doi.org/10.1186/s12931-018-0910-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zou S, Ma C, Yang F et al (2018) FBXO31 suppresses gastric cancer EMT by targeting Snail1 for proteasomal degradation. Mol Cancer Res 16:286–295. https://doi.org/10.1158/1541-7786.MCR-17-0432

    Article  CAS  PubMed  Google Scholar 

  160. Zhou H, Liu Y, Zhu R et al (2017) FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene 36:3312–3321. https://doi.org/10.1038/onc.2016.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yeh C-H, Bellon M, Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17:115. https://doi.org/10.1186/s12943-018-0857-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Kao S-H, Wu H-T, Wu K-J (2018) Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 25:67. https://doi.org/10.1186/s12929-018-0470-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sampath D, Calin GA, Puduvalli VK et al (2009) Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood 113:3744–3753. https://doi.org/10.1182/blood-2008-09-178707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Salah Z, Melino G, Aqeilan RI (2011) Negative regulation of the hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res 71:2010–2020. https://doi.org/10.1158/0008-5472.CAN-10-3516

    Article  CAS  PubMed  Google Scholar 

  165. Salah Z, Itzhaki E, Aqeilan RI (2014) The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway. Oncotarget 5:10886–10900. https://doi.org/10.18632/oncotarget.2540

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li P-F, Zhang Q-G (2018) Inhibition of ITCH suppresses proliferation and induces apoptosis of lung cancer cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 48:1703–1709. https://doi.org/10.1159/000492295

    Article  CAS  Google Scholar 

  167. Steklov M, Pandolfi S, Baietti MF et al (2018) Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science 362:1177–1182. https://doi.org/10.1126/science.aap7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mayo LD, Dixon JE, Durden DL et al (2002) PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277:5484–5489. https://doi.org/10.1074/jbc.M108302200

    Article  CAS  PubMed  Google Scholar 

  169. Wade M, Li Y-C, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96. https://doi.org/10.1038/nrc3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Laurie NA, Donovan SL, Shih C-S et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61. https://doi.org/10.1038/nature05194

    Article  CAS  PubMed  Google Scholar 

  171. Shao G, Wang R, Sun A et al (2018) The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells. Mol Cancer 17:24. https://doi.org/10.1186/s12943-018-0784-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wen W, Li J, Wang L et al (2017) Inhibition of NEDD4 inhibits cell growth and invasion and induces cell apoptosis in bladder cancer cells. Cell Cycle Georget Tex 16:1509–1514. https://doi.org/10.1080/15384101.2017.1338220

    Article  CAS  Google Scholar 

  173. Weng M, Luo Z-L, Wu X-L, Zeng W-Z (2017) The E3 ubiquitin ligase NEDD4 is translationally upregulated and facilitates pancreatic cancer. Oncotarget 8:20288–20296. https://doi.org/10.18632/oncotarget.15446

    PubMed  PubMed Central  Google Scholar 

  174. Eide PW, Cekaite L, Danielsen SA et al (2013) NEDD4 is overexpressed in colorectal cancer and promotes colonic cell growth independently of the PI3K/PTEN/AKT pathway. Cell Signal 25:12–18. https://doi.org/10.1016/j.cellsig.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  175. Kito Y, Bai J, Goto N et al (2014) Pathobiological properties of the ubiquitin ligase Nedd4L in melanoma. Int J Exp Pathol 95:24–28. https://doi.org/10.1111/iep.12051

    Article  CAS  PubMed  Google Scholar 

  176. Qu M-H, Han C, Srivastava AK et al (2016) miR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells. Tumour Biol J Int Soc Oncodevelopmental Biol Med 37:5645–5651. https://doi.org/10.1007/s13277-015-4328-8

    Article  CAS  Google Scholar 

  177. Tanksley JP, Chen X, Coffey RJ (2013) NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling. PLoS One 8:e81514. https://doi.org/10.1371/journal.pone.0081514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zhao R, Cui T, Han C et al (2015) DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L. Nucleic Acids Res 43:7838–7849. https://doi.org/10.1093/nar/gkv667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hu XY, Xu YM, Fu Q et al (2009) Nedd4L expression is downregulated in prostate cancer compared to benign prostatic hyperplasia. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 35:527–531. https://doi.org/10.1016/j.ejso.2008.09.015

    CAS  Google Scholar 

  180. Bao Y, Wu X, Yuan D et al (2017) High expression of Pirh2 is associated with poor prognosis in glioma. Cell Mol Neurobiol 37:1501–1509. https://doi.org/10.1007/s10571-017-0481-5

    Article  CAS  PubMed  Google Scholar 

  181. Logan IR, Gaughan L, McCracken SRC et al (2006) Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol 26:6502–6510. https://doi.org/10.1128/MCB.00147-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shimada M, Kitagawa K, Dobashi Y et al (2009) High expression of Pirh2, an E3 ligase for p27, is associated with low expression of p27 and poor prognosis in head and neck cancers. Cancer Sci 100:866–872

    Article  CAS  PubMed  Google Scholar 

  183. Duan W, Gao L, Druhan LJ et al (2004) Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. JNCI J Natl Cancer Inst 96:1718–1721. https://doi.org/10.1093/jnci/djh292

    Article  CAS  PubMed  Google Scholar 

  184. Wang X-M, Yang L-Y, Guo L et al (2009) p53-induced RING-H2 protein, a novel marker for poor survival in hepatocellular carcinoma after hepatic resection. Cancer 115:4554–4563. https://doi.org/10.1002/cncr.24494

    Article  CAS  PubMed  Google Scholar 

  185. Wu H, Li X, Feng M et al (2018) Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep 40:3285–3296. https://doi.org/10.3892/or.2018.6744

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Shen J, Yu Z, Li N (2018) The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of Axin1. Biochem Biophys Res Commun 503:991–997. https://doi.org/10.1016/j.bbrc.2018.06.107

    Article  CAS  PubMed  Google Scholar 

  187. Qiu D, Wang Q, Wang Z et al (2018) RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol basis Dis 1864:1552–1561. https://doi.org/10.1016/j.bbadis.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  188. Sethi G, Shanmugam MK, Arfuso F, Kumar AP (2018) Role of RNF20 in cancer development and progression – a comprehensive review. Biosci Rep 38:BSR20171287. https://doi.org/10.1042/BSR20171287

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gao Y, Cai A, Xi H et al (2017) Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway. Stem Cell Res Ther 8:98. https://doi.org/10.1186/s13287-017-0548-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Xiao Y, Jiang Y, Song H et al (2017) RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway. Sci Rep 7:43683. https://doi.org/10.1038/srep43683

    Article  PubMed  PubMed Central  Google Scholar 

  191. Gopalsamy A, Hagen T, Swaminathan K (2014) Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. PLoS One 9:e106547. https://doi.org/10.1371/journal.pone.0106547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Jiang X, Shen X (2018) Knockdown of miR-299-5p inhibits the progression of hepatocellular carcinoma by targeting SIAH1. Bull Cancer (Paris) 105:873–883. https://doi.org/10.1016/j.bulcan.2018.07.013

    Article  Google Scholar 

  193. Hung W-C, Tseng W-L, Shiea J, Chang H-C (2010) Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Lett 288:156–161. https://doi.org/10.1016/j.canlet.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  194. Lee S-W, Li C-F, Jin G et al (2015) Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Mol Cell 57:1022–1033. https://doi.org/10.1016/j.molcel.2015.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tosco P, La Terra Maggiore GM, Forni P et al (2011) Correlation between Skp2 expression and nodal metastasis in stage I and II oral squamous cell carcinomas. Oral Dis 17:102–108. https://doi.org/10.1111/j.1601-0825.2010.01713.x

    Article  CAS  PubMed  Google Scholar 

  196. Saigusa K, Hashimoto N, Tsuda H et al (2005) Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas. Cancer Sci 96:676–683. https://doi.org/10.1111/j.1349-7006.2005.00099.x

    Article  CAS  PubMed  Google Scholar 

  197. Loukopoulos P, Shibata T, Katoh H et al (2007) Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 98:392–400. https://doi.org/10.1111/j.1349-7006.2007.00395.x

    Article  CAS  PubMed  Google Scholar 

  198. Tao Y, Sun C, Zhang T, Song Y (2017) SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells. Oncol Rep 38:1806–1814. https://doi.org/10.3892/or.2017.5825

    Article  CAS  PubMed  Google Scholar 

  199. Yan C, Su H, Song X et al (2018) Smad ubiquitination regulatory factor 1 (Smurf1) promotes thyroid cancer cell proliferation and migration via ubiquitin-dependent degradation of kisspeptin-1. Cell Physiol Biochem 49:2047–2059. https://doi.org/10.1159/000493715

    Article  CAS  PubMed  Google Scholar 

  200. Chang H, Zhang J, Miao Z et al (2018) Suppression of the Smurf1 expression inhibits tumor progression in gliomas. Cell Mol Neurobiol 38:421–430. https://doi.org/10.1007/s10571-017-0485-1

    Article  CAS  PubMed  Google Scholar 

  201. Wang W, Du H, Liu H et al (2019) SMAD specific E3 ubiquitin protein ligase 1 promotes ovarian cancer cell migration and invasion via the activation of the RhoA/ROCK signaling pathway. Oncol Rep 41:668–676. https://doi.org/10.3892/or.2018.6836

    CAS  PubMed  Google Scholar 

  202. Fukuchi M, Fukai Y, Masuda N et al (2002) High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res 62:7162–7165

    CAS  PubMed  Google Scholar 

  203. Jin C, Yang Y, Anver MR et al (2009) Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res 69:735–740. https://doi.org/10.1158/0008-5472.CAN-08-1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fukasawa H, Yamamoto T, Fujigaki Y et al (2010) Reduction of transforming growth factor-β type II receptor is caused by the enhanced ubiquitin-dependent degradation in human renal cell carcinoma. Int J Cancer 127:1517–1525. https://doi.org/10.1002/ijc.25164

    Article  CAS  PubMed  Google Scholar 

  205. Chen Y, Li L, Qian X et al (2017) High expression of TRIM11 correlates with poor prognosis in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 41:190–196. https://doi.org/10.1016/j.clinre.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  206. Zhang Z, Xu C, Zhang X et al (2017) TRIM11 upregulation contributes to proliferation, invasion, and EMT of hepatocellular carcinoma cells. Oncol Res 25:691–699. https://doi.org/10.3727/096504016X14774897404770

    Article  PubMed  PubMed Central  Google Scholar 

  207. Pan Y, Zhang R, Chen H et al (2019) Expression of tripartite motif-containing proteactiin 11 (TRIM11) is associated with the progression of human prostate cancer and is downregulated by MicroRNA-5193. Med Sci Monit Int Med J Exp Clin Res 25:98–106. https://doi.org/10.12659/MSM.911818

    CAS  Google Scholar 

  208. Qin X, Qiu F, Zou Z (2017) TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ. Biochem Biophys Res Commun 493:568–572. https://doi.org/10.1016/j.bbrc.2017.08.151

    Article  CAS  PubMed  Google Scholar 

  209. Sun N, Xue Y, Dai T et al (2017) Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-β signaling. Biosci Rep 37. https://doi.org/10.1042/BSR20170805

  210. Takayama K-I, Suzuki T, Tanaka T et al (2018) TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer. Oncogene 37:2165–2180. https://doi.org/10.1038/s41388-017-0095-x

    Article  CAS  PubMed  Google Scholar 

  211. Zang H-L, Ren S-N, Cao H, Tian X-F (2017) The ubiquitin ligase TRIM25 inhibits hepatocellular carcinoma progression by targeting metastasis associated 1 protein. IUBMB Life 69:795–801. https://doi.org/10.1002/iub.1661

    Article  CAS  PubMed  Google Scholar 

  212. Fong K, Zhao JC, Song B et al (2018) TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun 9:5007. https://doi.org/10.1038/s41467-018-07475-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Li H, Zhang Y, Hai J et al (2018) Knockdown of TRIM31 suppresses proliferation and invasion of gallbladder cancer cells by down-regulating MMP2/9 through the PI3K/Akt signaling pathway. Biomed Pharmacother Biomedecine Pharmacother 103:1272–1278. https://doi.org/10.1016/j.biopha.2018.04.120

    Article  CAS  Google Scholar 

  214. Guo P, Ma X, Zhao W et al (2018) TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1-TSC2 complex. Oncogene 37:478–488. https://doi.org/10.1038/onc.2017.349

    Article  CAS  PubMed  Google Scholar 

  215. Zhang J, Zhang C, Cui J et al (2017) TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death Dis 8:e2831. https://doi.org/10.1038/cddis.2017.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chen Y, Zhao J, Li D et al (2018) TRIM56 suppresses multiple myeloma progression by activating TLR3/TRIF signaling. Yonsei Med J 59:43–50. https://doi.org/10.3349/ymj.2018.59.1.43

    Article  CAS  PubMed  Google Scholar 

  217. Zhao L, Zhang P, Su X-J, Zhang B (2018) The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin. J Cell Physiol 233:2420–2425. https://doi.org/10.1002/jcp.26114

    Article  CAS  PubMed  Google Scholar 

  218. Liao L, Song M, Li X et al (2017) E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancer. Cancer Res 77:2090–2101. https://doi.org/10.1158/0008-5472.CAN-16-2409

    Article  CAS  PubMed  Google Scholar 

  219. Chen C, Sun X, Guo P et al (2007) Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26:2386–2394. https://doi.org/10.1038/sj.onc.1210021

    Article  CAS  PubMed  Google Scholar 

  220. Chen C, Zhou Z, Ross JS et al (2007) The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 121:80–87. https://doi.org/10.1002/ijc.22653

    Article  CAS  PubMed  Google Scholar 

  221. Sanarico AG, Ronchini C, Croce A et al (2018) The E3 ubiquitin ligase WWP1 sustains the growth of acute myeloid leukaemia. Leukemia 32:911–919. https://doi.org/10.1038/leu.2017.342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wu Z, Zan P, Li S et al (2015) Knockdown of WWP1 inhibits growth and invasion, but induces apoptosis of osteosarcoma cells. Int J Clin Exp Pathol 8:7869–7877

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang L, Wu Z, Ma Z et al (2015) WWP1 as a potential tumor oncogene regulates PTEN-Akt signaling pathway in human gastric carcinoma. Tumor Biol 36:787–798. https://doi.org/10.1007/s13277-014-2696-0

    Article  CAS  Google Scholar 

  224. Yang R, He Y, Chen S et al (2016) Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion. Biochem Biophys Res Commun 479:146–151. https://doi.org/10.1016/j.bbrc.2016.07.084

    Article  CAS  PubMed  Google Scholar 

  225. Liang J, Qi W-F, Xie S et al (2017) Expression of WW domain-containing protein 2 is correlated with pathological grade and recurrence of glioma. J Cancer Res Ther 13:1032–1037. https://doi.org/10.4103/0973-1482.176176

    CAS  PubMed  Google Scholar 

  226. Huang X, Wang X, Yuan X et al (2019) XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene 38:1448. https://doi.org/10.1038/s41388-018-0513-8

    Article  CAS  PubMed  Google Scholar 

  227. Liu K, Zhang J, Wang H (2018) Small ubiquitin-like modifier/sentrin-specific peptidase 1 associates with chemotherapy and is a risk factor for poor prognosis of non-small cell lung cancer. J Clin Lab Anal 32:e22611. https://doi.org/10.1002/jcla.22611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Zhou G-Q, Han F, Shi Z-L et al (2018) miR-133a-3p targets SUMO-specific protease 1 to inhibit cell proliferation and cell cycle progress in colorectal cancer. Oncol Res 26:795–800. https://doi.org/10.3727/096504017X15004613574679

    Article  PubMed  PubMed Central  Google Scholar 

  229. Dong B, Gao Y, Kang X et al (2016) SENP1 promotes proliferation of clear cell renal cell carcinoma through activation of glycolysis. Oncotarget 7:80435–80449. https://doi.org/10.18632/oncotarget.12606

    PubMed  PubMed Central  Google Scholar 

  230. Zhang W, Sun H, Shi X et al (2016) SENP1 regulates hepatocyte growth factor-induced migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Tumour Biol J Int Soc Oncodevelopmental Biol Med 37:7741–7748. https://doi.org/10.1007/s13277-015-4406-y

    Article  CAS  Google Scholar 

  231. Bawa-Khalfe T, Yang F-M, Ritho J et al (2017) SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget 8:17651–17664. https://doi.org/10.18632/oncotarget.13283

    Article  PubMed  Google Scholar 

  232. Wu J, Lei H, Zhang J et al (2016) Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget 7:58995–59005. https://doi.org/10.18632/oncotarget.10636

    PubMed  PubMed Central  Google Scholar 

  233. Sun X-X, Chen Y, Su Y et al (2018) SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc Natl Acad Sci U S A 115:10983–10988. https://doi.org/10.1073/pnas.1802932115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wang Z, Jin J, Zhang J et al (2016) Depletion of SENP1 suppresses the proliferation and invasion of triple-negative breast cancer cells. Oncol Rep 36:2071–2078. https://doi.org/10.3892/or.2016.5036

    Article  CAS  PubMed  Google Scholar 

  235. Xia W, Tian H, Cai X et al (2016) Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-κB/Akt pathways. Gene 595:175–179. https://doi.org/10.1016/j.gene.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  236. Liu F, Li L, Li Y et al (2018) Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV. Int J Oncol 53:2010–2020. https://doi.org/10.3892/ijo.2018.4537

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Wang X, Liang X, Liang H, Wang B (2018) SENP1/HIF-1α feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. J Cell Biochem 119:1819–1826. https://doi.org/10.1002/jcb.26342

    Article  CAS  PubMed  Google Scholar 

  238. Hu X-Y, Liu Z, Zhang K-L et al (2017) SUMO-specific protease 2-mediated deSUMOylation is required for NDRG2 stabilization in gastric cancer cells. Cancer Biomark Sect Dis Markers 21:195–201. https://doi.org/10.3233/CBM-170651

    Article  CAS  Google Scholar 

  239. Chen X-L, Wang S-F, Liang X-T et al (2019) SENP2 exerts an anti-tumor effect on chronic lymphocytic leukemia cells through the inhibition of the Notch and NF-κB signaling pathways. Int J Oncol 54:455–466. https://doi.org/10.3892/ijo.2018.4635

    CAS  PubMed  Google Scholar 

  240. Cheng J, Su M, Jin Y et al (2017) Upregulation of SENP3/SMT3IP1 promotes epithelial ovarian cancer progression and forecasts poor prognosis. Tumour Biol J Int Soc Oncodevelopmental Biol Med 39. https://doi.org/10.1177/1010428317694543

  241. Jin Z-L, Pei H, Xu Y-H et al (2016) The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 20:3566–3573

    PubMed  Google Scholar 

  242. He P, Sun X, Cheng H-J et al (2018) UBA2 promotes proliferation of colorectal cancer. Mol Med Rep 18:5552–5562. https://doi.org/10.3892/mmr.2018.9613

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  244. Li J, Sun X, He P et al (2018) Ubiquitin-like modifier activating enzyme 2 promotes cell migration and invasion through Wnt/β-catenin signaling in gastric cancer. World J Gastroenterol 24:4773–4786. https://doi.org/10.3748/wjg.v24.i42.4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Fang S, Qiu J, Wu Z et al (2017) Down-regulation of UBC9 increases the sensitivity of hepatocellular carcinoma to doxorubicin. Oncotarget 8:49783–49795. https://doi.org/10.18632/oncotarget.17939

    PubMed  PubMed Central  Google Scholar 

  246. Zhang D, Yu K, Yang Z et al (2018) Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin 43 SUMOylation. Int J Oncol 53:1323–1331. https://doi.org/10.3892/ijo.2018.4448

    CAS  PubMed  Google Scholar 

  247. Chanda A, Chan A, Deng L et al (2017) Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PLoS One 12:e0177639. https://doi.org/10.1371/journal.pone.0177639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Hoefer J, Schäfer G, Klocker H et al (2012) PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. Am J Pathol 180:2097–2107. https://doi.org/10.1016/j.ajpath.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  249. Puhr M, Hoefer J, Eigentler A et al (2016) PIAS1 is a determinant of poor survival and acts as a positive feedback regulator of AR signaling through enhanced AR stabilization in prostate cancer. Oncogene 35:2322–2332. https://doi.org/10.1038/onc.2015.292

    Article  CAS  PubMed  Google Scholar 

  250. Driscoll JJ, Pelluru D, Lefkimmiatis K et al (2010) The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 115:2827–2834. https://doi.org/10.1182/blood-2009-03-211045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Guo Z, Wang Y, Zhao Y et al (2019) The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 687:219–227. https://doi.org/10.1016/j.gene.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  252. Lee G-W, Park JB, Park SY et al (2018) The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene 37:5552–5568. https://doi.org/10.1038/s41388-018-0354-5

    Article  CAS  PubMed  Google Scholar 

  253. Mohamed MS, Bishr MK, Almutairi FM, Ali AG (2017) Inhibitors of apoptosis: clinical implications in cancer. Apoptosis 22:1487–1509. https://doi.org/10.1007/s10495-017-1429-4

    Article  CAS  PubMed  Google Scholar 

  254. Engel K, Rudelius M, Slawska J et al (2016) USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med 8:851–862. https://doi.org/10.15252/emmm.201506047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zheng N, Zhou Q, Wang Z, Wei W (2016) Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochim Biophys Acta 1866:12–22. https://doi.org/10.1016/j.bbcan.2016.05.001

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Uddin S, Bhat AA, Krishnankutty R et al (2016) Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 36:18–32. https://doi.org/10.1016/j.semcancer.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  257. Shimizu K, Nihira NT, Inuzuka H, Wei W (2018) Physiological functions of FBW7 in cancer and metabolism. Cell Signal 46:15–22. https://doi.org/10.1016/j.cellsig.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Asnafi V, Buzyn A, Noir SL et al (2009) NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 113:3918–3924. https://doi.org/10.1182/blood-2008-10-184069

    Article  CAS  PubMed  Google Scholar 

  259. Hao Z, Huang S (2015) E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci Landmark Ed 20:474–490

    Article  CAS  PubMed  Google Scholar 

  260. Masuda T, Inoue H, Sonoda H et al (2002) Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819–3825

    CAS  PubMed  Google Scholar 

  261. Ougolkov A, Zhang B, Yamashita K et al (2004) Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer. J Natl Cancer Inst 96:1161–1170. https://doi.org/10.1093/jnci/djh219

    Article  CAS  PubMed  Google Scholar 

  262. Li L, Wang M, Yu G et al (2014) Overactivated neddylation pathway as a therapeutic target in lung cancer. JNCI J Natl Cancer Inst 106:dju083. https://doi.org/10.1093/jnci/dju083

    PubMed  Google Scholar 

  263. Gao Q, Yu G-Y, Shi J-Y et al (2014) Neddylation pathway is up-regulated in human intrahepatic cholangiocarcinoma and serves as a potential therapeutic target. Oncotarget 5:7820–7832. https://doi.org/10.18632/oncotarget.2309

    PubMed  PubMed Central  Google Scholar 

  264. Hoellein A, Fallahi M, Schoeffmann S et al (2014) Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood 124:2081–2090. https://doi.org/10.1182/blood-2014-06-584524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kessler JD, Kahle KT, Sun T et al (2011) A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335:348–353. https://doi.org/10.1126/science.1212728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Wang Q, Xia N, Li T et al (2013) SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene 32:2493–2498. https://doi.org/10.1038/onc.2012.250

    Article  CAS  PubMed  Google Scholar 

  267. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498. https://doi.org/10.1038/cr.2016.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Farshi P, Deshmukh RR, Nwankwo JO et al (2015) Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin Ther Pat 25:1191–1208. https://doi.org/10.1517/13543776.2015.1056737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. D’Arcy P, Wang X, Linder S (2015) Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 147:32–54. https://doi.org/10.1016/j.pharmthera.2014.11.002

    Article  PubMed  CAS  Google Scholar 

  270. Xu GW, Ali M, Wood TE et al (2010) The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115:2251–2259. https://doi.org/10.1182/blood-2009-07-231191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Yang Y, Kitagaki J, Dai R-M et al (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res 67:9472–9481. https://doi.org/10.1158/0008-5472.CAN-07-0568

    Article  CAS  PubMed  Google Scholar 

  272. Hyer ML, Milhollen MA, Ciavarri J et al (2018) A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med 24:186–193. https://doi.org/10.1038/nm.4474

    Article  CAS  PubMed  Google Scholar 

  273. Barghout SH, Patel PS, Wang X et al (2019) Preclinical evaluation of the selective small-molecule UBA1 inhibitor, TAK-243, in acute myeloid leukemia. Leukemia 33:37. https://doi.org/10.1038/s41375-018-0167-0

    Article  CAS  PubMed  Google Scholar 

  274. Brownell JE, Sintchak MD, Gavin JM et al (2010) Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37:102–111. https://doi.org/10.1016/j.molcel.2009.12.024

    Article  CAS  PubMed  Google Scholar 

  275. Soucy TA, Smith PG, Milhollen MA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736. https://doi.org/10.1038/nature07884

    Article  CAS  PubMed  Google Scholar 

  276. Sarantopoulos J, Shapiro GI, Cohen RB et al (2016) Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 22:847–857. https://doi.org/10.1158/1078-0432.CCR-15-1338

    Article  CAS  Google Scholar 

  277. Shah JJ, Jakubowiak AJ, O’Connor OA et al (2016) Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res 22:34–43. https://doi.org/10.1158/1078-0432.CCR-15-1237

    Article  CAS  PubMed  Google Scholar 

  278. Bhatia S, Pavlick AC, Boasberg P et al (2016) A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma. Investig New Drugs 34:439–449. https://doi.org/10.1007/s10637-016-0348-5

    Article  CAS  Google Scholar 

  279. Nawrocki ST, Kelly KR, Smith PG et al (2015) The NEDD8-activating enzyme inhibitor MLN4924 disrupts nucleotide metabolism and augments the efficacy of cytarabine. Clin Cancer Res 21:439–447. https://doi.org/10.1158/1078-0432.CCR-14-1960

    Article  CAS  PubMed  Google Scholar 

  280. Visconte V, Nawrocki ST, Espitia CM et al (2016) Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine. Leukemia 30:1190–1194. https://doi.org/10.1038/leu.2015.250

    Article  CAS  PubMed  Google Scholar 

  281. Swords RT, Coutre S, Maris MB et al (2018) Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 131:1415–1424. https://doi.org/10.1182/blood-2017-09-805895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Fukuda I, Ito A, Hirai G et al (2009) Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol 16:133–140. https://doi.org/10.1016/j.chembiol.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  283. Bossis G, Sarry J-E, Kifagi C et al (2014) The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep 7:1815–1823. https://doi.org/10.1016/j.celrep.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  284. Bogachek MV, Park JM, De Andrade JP et al (2016) Inhibiting the SUMO pathway represses the cancer stem cell population in breast and colorectal carcinomas. Stem Cell Rep 7(6):1140–1151. https://doi.org/10.1016/j.stemcr.2016.11.001

    Article  CAS  Google Scholar 

  285. Tan J, Chen B, He L et al (2012) Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res Chung-Kuo Yen Cheng Yen Chiu 24:275–283. https://doi.org/10.3978/j.issn.1000-9604.2012.10.07

    Article  PubMed  CAS  Google Scholar 

  286. Baek SH, Ko J-H, Lee JH et al (2017) Ginkgolic acid inhibits invasion and migration and TGF-β-induced EMT of lung cancer cells through PI3K/Akt/mTOR inactivation. J Cell Physiol 232:346–354. https://doi.org/10.1002/jcp.25426

    Article  CAS  PubMed  Google Scholar 

  287. Hamdoun S, Efferth T, Hamdoun S, Efferth T (2017) Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget 5. https://doi.org/10.18632/oncotarget.16626

  288. Eliseeva ED, Valkov V, Jung M, Jung MO (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6:2391–2398. https://doi.org/10.1158/1535-7163.MCT-07-0159

    Article  CAS  PubMed  Google Scholar 

  289. He X, Riceberg J, Soucy T et al (2017) Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol 13:1164–1171. https://doi.org/10.1038/nchembio.2463

    Article  CAS  PubMed  Google Scholar 

  290. Pulvino M, Liang Y, Oleksyn D et al (2012) Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood 120:1668–1677. https://doi.org/10.1182/blood-2012-02-406074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Hodge CD, Edwards RA, Markin CJ et al (2015) Covalent inhibition of Ubc13 affects ubiquitin signaling and reveals active site elements important for targeting. ACS Chem Biol 10:1718–1728. https://doi.org/10.1021/acschembio.5b00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Strickson S, Campbell DG, Emmerich CH et al (2013) The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J 451:427–437. https://doi.org/10.1042/BJ20121651

    Article  CAS  PubMed  Google Scholar 

  293. Ceccarelli DF, Tang X, Pelletier B et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087. https://doi.org/10.1016/j.cell.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  294. Huang H, Ceccarelli DF, Orlicky S et al (2014) E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin. Nat Chem Biol 10:156–163. https://doi.org/10.1038/nchembio.1412

    Article  CAS  PubMed  Google Scholar 

  295. Sanders MA, Brahemi G, Nangia-Makker P et al (2013) Novel inhibitors of Rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization. Mol Cancer Ther 12:373–383. https://doi.org/10.1158/1535-7163.MCT-12-0793

    Article  CAS  PubMed  Google Scholar 

  296. Sanders MA, Haynes B, Nangia-Makker P et al (2017) Pharmacological targeting of RAD6 enzyme-mediated translesion synthesis overcomes resistance to platinum-based drugs. J Biol Chem 292:10347–10363. https://doi.org/10.1074/jbc.M117.792192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Hirohama M, Kumar A, Fukuda I et al (2013) Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem Biol. https://doi.org/10.1021/cb400630z

  298. Nomura Y, Thuaud F, Sekine D et al (2019) Synthesis of all stereoisomers of monomeric spectomycin A1/A2 and evaluation of their protein SUMOylation-inhibitory activity. Chem Weinh Bergstr Ger. https://doi.org/10.1002/chem.201901093

  299. Kim YS, Nagy K, Keyser S, Schneekloth JS Jr (2013) An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem Biol 20:604–613. https://doi.org/10.1016/j.chembiol.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Baik H, Boulanger M, Hosseini M et al (2018) Targeting the SUMO pathway primes all-trans retinoic acid–induced differentiation of nonpromyelocytic acute myeloid leukemias. Cancer Res 78:2601–2613. https://doi.org/10.1158/0008-5472.CAN-17-3361

    Article  CAS  PubMed  Google Scholar 

  301. Wertz IE, Wang X (2019) From discovery to bedside: targeting the ubiquitin system. Cell Chem Biol 26:156–177. https://doi.org/10.1016/j.chembiol.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  302. Gupta A, Shah K, Oza MJ, Behl T (2019) Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 109:484–492. https://doi.org/10.1016/j.biopha.2018.10.155

    Article  CAS  PubMed  Google Scholar 

  303. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848. https://doi.org/10.1126/science.1092472

    Article  CAS  PubMed  Google Scholar 

  304. Ray-Coquard I, Blay J-Y, Italiano A et al (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 13:1133–1140. https://doi.org/10.1016/S1470-2045(12)70474-6

    Article  CAS  PubMed  Google Scholar 

  305. Andreeff M, Kelly KR, Yee K et al (2016) Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res 22:868–876. https://doi.org/10.1158/1078-0432.CCR-15-0481

    Article  CAS  PubMed  Google Scholar 

  306. Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938. https://doi.org/10.1073/pnas.0708917105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Sun D, Li Z, Rew Y et al (2014) Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2–p53 inhibitor in clinical development. J Med Chem 57:1454–1472. https://doi.org/10.1021/jm401753e

    Article  CAS  PubMed  Google Scholar 

  308. Liao G, Yang D, Ma L et al (2018) The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. Eur J Med Chem 159:1–9. https://doi.org/10.1016/j.ejmech.2018.09.044

    Article  CAS  PubMed  Google Scholar 

  309. Klein M (2017) Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Expert Opin Drug Discov:1–9. https://doi.org/10.1080/17460441.2017.1372745

  310. Carvajal LA, Neriah DB, Senecal A et al (2018) Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 10:eaao3003. https://doi.org/10.1126/scitranslmed.aao3003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Fulda S (2017) Smac mimetics to therapeutically target IAP proteins in cancer, Chapter 4. In: Galluzzi L (ed) International review of cell and molecular biology. Academic, pp 157–169

    Google Scholar 

  312. McComb S, Aguadé-Gorgorió J, Harder L et al (2016) Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Transl Med 8:339ra70. https://doi.org/10.1126/scitranslmed.aad2986

    Article  PubMed  CAS  Google Scholar 

  313. Carter BZ, Mak PY, Mak DH et al (2014) Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst 106:djt440. https://doi.org/10.1093/jnci/djt440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Amaravadi RK, Schilder RJ, Martin LP et al (2015) A phase I study of the SMAC-mimetic birinapant in adults with refractory solid tumors or lymphoma. Mol Cancer Ther 14:2569–2575. https://doi.org/10.1158/1535-7163.MCT-15-0475

    Article  CAS  PubMed  Google Scholar 

  315. Infante JR, Dees EC, Olszanski AJ et al (2014) Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol 32:3103–3110. https://doi.org/10.1200/JCO.2013.52.3993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the “Oncogenesis and Immunotherapy” group of IGMM for support and fruitful discussions. Funding was provided by the CNRS, Ligue Nationale contre le Cancer (Programme Equipe Labellisée), INCA (ROSAML), Association Laurette Fugain (contract ALF-2017/02), the Fondation ARC (to PG), the Fédération Leucémie Espoir, The EpiGenMed Labex, and the ANR under the “Investissements d’avenir” programme (ANR-16-IDEX-0006).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bossis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gâtel, P., Piechaczyk, M., Bossis, G. (2020). Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_2

Download citation

Publish with us

Policies and ethics