Skip to main content

Fabrication of Nanostructured Materials with Rare-Earth Elements for Bioanalytical Applications

  • Chapter
  • First Online:
Rare-Earth Metal Recovery for Green Technologies

Abstract

The use of rare-earth element-based nanomaterials plays an essential role in biomedical applications due to their luminescent (upconversion, downconversion, and permanent luminescence), magnetic properties, and absorption ability of X-rays. Rare-earth elements have been widely used for the fabrication of nanomaterials that are shown attractive properties including absence of blinking, high photostability, large Stokes shifts, extremely narrow emission lines, and long lifetimes, respectively. This book chapter explores the recent applications of rare-earth element-based nanomaterials for the detection of various biomolecules in various biofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bouzigues, C., Gacoin, T., & Alexandrou, A. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5, 8488–8505.

    Article  CAS  Google Scholar 

  • Chen, D., & Wang, Y. (2013). Impurity doping: A novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale, 5, 4621–4637.

    Article  CAS  Google Scholar 

  • Chen, H., Guan, Y., Wang, S., Ji, Y., Gong, M., & Wang, L. (2014). Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir, 30, 13085–13091.

    Article  CAS  Google Scholar 

  • Cheng, K., Zhang, J., Zhang, L., Wang, L., & Chen, H. (2017). Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods. Spectrochimica Acta A, 171, 168–173.

    Article  CAS  Google Scholar 

  • Dai, S., Wu, S., Duan, N., & Wang, Z. (2016). A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin A using upconversion nanoparticles and gold nanorods. Microchimica Acta, 183, 1909–1916.

    Article  CAS  Google Scholar 

  • Desai, M. L., Jha, S., Basu, H., Singhal, R. K., Sharma, P. K., & Kailasa, S. K. (2018). Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for the sensing of Hg2+ ions and imaging of fungal cells. New Journal of Chemistry, 42, 6125–6133.

    Article  CAS  Google Scholar 

  • Dong, L., Yang, Z., Zhang, Y., Zhu, Y., Wang, L., & Wang, L. (2010). Novel luminescent nanoparticles for DNA detection. Spectrochimica Acta A, 75(5), 1530–1534.

    Article  CAS  Google Scholar 

  • Duan, N., Wu, S., Zhu, C., et al. (2012). Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 723, 1–6.

    Article  CAS  Google Scholar 

  • Escudero, A., Becerro, A. I., Carrillo-Carrión, C., Núñez, N. O., Zyuzin, M. V., Laguna, M., González-Mancebo, D., Ocaña, M., & Parak, W. J. (2017). Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nano, 6(5), 881–921.

    CAS  Google Scholar 

  • Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P., & Gorris, H. H. (2017). Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Analytical Chemistry, 89, 11825–11830.

    Article  CAS  Google Scholar 

  • Haase, M., & Schäfer, H. (2011). Upconverting nanoparticles. Angewandte Chemie International Edition, 50, 5808–5829.

    Article  CAS  Google Scholar 

  • He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Analytical Chemistry, 88, 1530–1534.

    Article  CAS  Google Scholar 

  • Jiang, P., He, M., Shen, L., Shi, A., & Liu, Z. (2017). A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators B: Chemical, 239, 319–324.

    Article  CAS  Google Scholar 

  • Jin, B., Wang, S., Lin, M., Jin, Y., Zhang, S., Cui, X., Gong, Y., Li, A., Xu, F., & Lu, T. J. (2017). Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors & Bioelectronics, 90, 525–533.

    Article  CAS  Google Scholar 

  • Jo, E.-J., Mun, H., & Kim, M.-G. (2016). Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Analytical Chemistry, 88, 2742–2746.

    Article  CAS  Google Scholar 

  • Kim, J., Kwon, J. H., Jang, J., Lee, H., Kim, S., Hahn, Y. K., Kim, S. K., Lee, K. H., Lee, S., Pyo, H., Song, C. S., & Lee, J. (2018). Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosensors & Bioelectronics, 112, 209–215.

    Article  CAS  Google Scholar 

  • Kuningas, K., Rantanen, T., Karhunen, U., Lövgren, T., & Soukka, T. (2005). Simultaneous use of time-resolved fluorescence and anti- stokes photoluminescence in a bioaffinity assay. Analytical Chemistry, 77, 2826–2834.

    Article  CAS  Google Scholar 

  • Li, A., Zhao, H., Jin, L., & Zheng, D. (2006). Nucleic acids analysis with nano-Ag-Tb(III) by a resonance light scattering technique. Analytical Sciences, 22(5), 775–779.

    Article  CAS  Google Scholar 

  • Li, X., Wei, L., Pan, L., Yi, Z., Wang, X., Ye, Z., Xiao, L., Li, H. W., & Wang, J. (2018). Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 90, 4807–4814.

    Article  CAS  Google Scholar 

  • Liang, Z., Wang, X., Zhu, W., Zhang, P., Yang, Y., Sun, C., Zhang, J., Wang, X., Xu, Z., Zhao, Y., Yang, R., Zhao, S., & Zhou, L. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Applied Materials & Interfaces, 9, 3497–3504.

    Article  CAS  Google Scholar 

  • Liu, Y., Jia, Q., Guo, Q., Jiang, A., & Zhou, J. (2017). In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Analytical Chemistry, 89, 12299–12305.

    Article  CAS  Google Scholar 

  • Liu, Y., Tu, D., Zheng, W., Lu, L., You, W., Zhou, S., Huang, P., Li, R., & Chen, X. (2018). A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Research, 11, 3164–3174.

    Article  CAS  Google Scholar 

  • Luo, Z., Zhang, L., Zeng, R., Su, L., & Tang, D. (2018). Targeted delivery of a γ-glutamyl transpeptidase activatable near-infrared-fluorescent probe for selective cancer imaging. Analytical Chemistry, 90, 2875–2883.

    Article  CAS  Google Scholar 

  • Lv, J., Zhao, S., Wu, S., & Wang, Z. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosensors & Bioelectronics, 90, 203–209.

    Article  CAS  Google Scholar 

  • Ma, L., Liu, F., Lei, Z., & Wang, Z. (2017). A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosensors & Bioelectronics, 87, 638–645.

    Article  CAS  Google Scholar 

  • Mei, Q. S., Jing, H. R., Li, Y., Yisibashaer, W., Chen, J., Li, B. N., & Zhang, Y. (2016). Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Biolelectronics, 75, 427–432.

    Article  CAS  Google Scholar 

  • Mendez-Gonzalez, D., Laurenti, M., Latorre, A., Somoza, A., Vazquez, A., Negredo, A. I., López-Cabarcos, E., Calderón, O. G., Melle, S., & Rubio-Retama, J. (2017). Oligonucleotide sensor based on selective capture of upconversion nanoparticles triggered by target-induced DNA interstrand ligand reaction. ACS Applied Materials & Interfaces, 9, 12272–12281.

    Article  CAS  Google Scholar 

  • Näreoja, T., Vehniäinen, M., Lamminmäki, U., Hänninen, P. E., & Härmä, H. (2009). Study on nonspecificity of an immuoassay using Eu-doped polystyrene nanoparticle labels. Journal of Immunological Methods, 345, 80–89.

    Article  CAS  Google Scholar 

  • Neacsu, I. A., Stoica, A. E., Vasile, B. S., & Andronescu, E. (2019). Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials, 9, 239. https://doi.org/10.3390/nano9020239.

    Article  CAS  Google Scholar 

  • Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., & Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005(5), 113–117.

    Google Scholar 

  • Park, Y. I., Lee, K. T., Suh, Y. D., & Hyeon, T. (2015). Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 44, 1302–1317.

    Article  CAS  Google Scholar 

  • Perera, T. S. H., Han, Y., Lu, X., Wang, X., Dai, H., & Li, S. (2015). Rare earth doped apatite nanomaterials for biological application. Journal of Nanomaterials, 2015, 705390. https://doi.org/10.1155/2015/705390.

    Article  CAS  Google Scholar 

  • Qu, A., Wu, X., Xu, L., Liu, L., Ma, W., Kuang, H., & Xu, C. (2017). SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 9, 3865–3872.

    Article  CAS  Google Scholar 

  • Rafique, R., Kailasa, S. K., & Park, T. J. (2019). Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends in Analytical Chemistry, 120, 115646.

    Article  CAS  Google Scholar 

  • Son, A., Dhirapong, A., Dosev, D. K., Kennedy, I. M., Weiss, R. H., & Hristova, K. R. (2008b). Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Analytical and Bioanalytical Chemistry, 390, 1829–1835.

    Article  CAS  Google Scholar 

  • Son, A., Dosev, D., Nichkova, M., Ma, Z., Kennedy, I. M., Scow, K. M., & Hristova, K. R. (2007). Quantitative DNA hybridization in solution using magnetic/luminescent core shell nanoparticles. Analytical Biochemistry, 370, 186–194.

    Article  CAS  Google Scholar 

  • Son, A., Nichkova, M., Dosev, D., Kennedy, I. M., & Hristova, K. R. (2008a). Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria. Journal of Nanoscience and Nanotechnology, 8, 2463–2467.

    CAS  Google Scholar 

  • Song, X., Zhang, J., Yue, Z., Wang, Z., Liu, Z., & Zhang, S. (2017). Dual-activator codoped upconversion nanoprobe with core–multishell structure for in vitro and in vivo detection of hydroxyl radical. Analytical Chemistry, 89, 11021–11026.

    Article  CAS  Google Scholar 

  • Tsang, M. K., Ye, W., Wang, G., Li, J., Yang, M., & Hao, J. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano, 10, 598–605.

    Article  CAS  Google Scholar 

  • Tsien, R. Y. (1988). Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends in Neurosciences, 11, 419–424.

    Article  CAS  Google Scholar 

  • Tu, D., Liu, L., Ju, Q., et al. (2011). Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angewandte Chemie International Edition, 50, 6306–6310.

    Article  CAS  Google Scholar 

  • Tu, D., Liu, Y., Zhu, H., & Chen, X. (2013). Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals. Chemistry - A European Journal, 19, 5516–5527.

    Article  CAS  Google Scholar 

  • van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S., & Tanke, H. J. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19, 273–276.

    Article  CAS  Google Scholar 

  • van den Eeckhout, K., Poelman, D., & Smet, P. (2013). Persistent luminescence in non-Eu2+-doped compounds: A review. Materials, 6, 2789.

    Article  CAS  Google Scholar 

  • Wang, F., Li, W., Wang, J., Ren, J., & Qu, X. (2015). Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chemical Communications, 51, 11630–11633.

    Article  CAS  Google Scholar 

  • Wang, L., Li, P., & Wang, L. (2008). Luminescent and hydrophilic LaF3-polymer nanocomposite for DNA detection. Luminescence, 24, 39–44.

    Article  CAS  Google Scholar 

  • Wang, M., Hou, W., Mi, C. C., Wang, W. X., Xu, Z. R., Teng, H. H., Mao, C. B., & Xu, S. K. (2009). Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry, 81, 8783–8789.

    Article  CAS  Google Scholar 

  • Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86, 3100–3107.

    Article  CAS  Google Scholar 

  • Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., & Guo, L.-H. (2004). Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Letters, 4, 2191–2196.

    Article  CAS  Google Scholar 

  • You, M., Lin, M., Gong, Y., Wang, S., Li, A., Ji, L., Zhao, H., Ling, K., Wen, T., Huang, Y., Gao, D., Ma, Q., Wang, T., Ma, A., Li, X., & Xu, F. (2017). Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 11, 6261–6270.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, S., Gao, N., Feng, D., Wang, L., & Chen, H. (2015). Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosensors & Bioelectronics, 72, 282–287.

    Google Scholar 

  • Zhang, L., Ling, B., Wang, L., & Chen, H. (2017). A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta, 172, 95–101.

    Article  CAS  Google Scholar 

  • Zhao, B., & Li, Y. (2018). Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta, 179, 478–484.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SKK acknowledges the Department of Science and Technology, Government of India (EMR/2016/002621/IPC), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Kailasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kailasa, S.K., Koduru, J.R., Thenepalli, T. (2020). Fabrication of Nanostructured Materials with Rare-Earth Elements for Bioanalytical Applications. In: Jyothi, R. (eds) Rare-Earth Metal Recovery for Green Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-38106-6_7

Download citation

Publish with us

Policies and ethics