Skip to main content

Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment

  • Chapter
  • First Online:
Nanosensors for Environmental Applications

Abstract

The rapid population growth and industrialization have led to widespread use of pesticides, drugs, personal care products, and dyes, some of which are so-called emerging contaminants (ECs). These compounds have obviously brought great benefits in controlling diseases and for increasing agricultural and industrial production, but their indiscriminate use has caused problems to human health and the environment. They can be found in surface water and groundwater at concentrations from ng L−1 to mg L−1, which may seem negligible. However, some contaminants can accumulate or transform in other more toxic products in the human body and induce such problems as antibiotic resistance. Unfortunately, since there is no regulation for some emerging contaminants, they are not monitored in the environment or cannot be detected with conventional analytical techniques.

The purpose of this chapter is to present the state-of-the-art methodology for detecting the emerging contaminants, e.g., pesticides and pharmaceutical products. The chapter will be divided into subtopics – pesticides, pollutants, and pharmaceutical waste – with adverse environment effects also commented upon. The analytical methodologies for detection will be highlighted, with emphasis on recent advances in sensors and biosensors that may offer low-cost, sensitive, selective, and accurate analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamand J, Gavrilescu M, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156

    Article  CAS  Google Scholar 

  • Adeel M et al (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119. https://doi.org/10.1016/j.envint.2016.12.010

    Article  CAS  Google Scholar 

  • Ait-lahcen A, Mercante LA, Amine A (2016) Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal Chem 88:3578–3584

    Article  CAS  Google Scholar 

  • Akpor OB, Muchie M (2011) Environmental and public health implications of wastewater quality. Afr J Biotechnol 10(13):2379–2387

    Google Scholar 

  • Alawad A, Istamboulié G, Calas-blanchard C, Noguer T (2019) A reagentless aptasensor based on intrinsic aptamer redox activity for the detection of tetracycline in water. Sensors Actuators B Chem 288(February):141–146. https://doi.org/10.1016/j.snb.2019.02.103

    Article  CAS  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  Google Scholar 

  • Amine A, Arduini F, Moscone D, Palleschi G (2015) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194. https://doi.org/10.1016/j.bios.2015.07.010

    Article  CAS  Google Scholar 

  • Andrade FID et al (2014) TLC and ion-pair HPLC 1 MSc in Public Health from State University of Ceará. Food Chem:1–25. https://doi.org/10.1016/j.foodchem.2014.01.100

  • Andreescu S, Marty J-L (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23(1):1–15

    Article  CAS  Google Scholar 

  • Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170(3–4):193–214

    Article  CAS  Google Scholar 

  • Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta:2063–2083. https://doi.org/10.1007/s00604-016-1858-8

  • Arduini F et al (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126(October 2018):346–354

    Article  CAS  Google Scholar 

  • Aswal DK, Gupta SK (2006) Science and technology of chemiresistor gas sensors. Nova Science Publishers. https://books.google.com.br/books?id=fmw6nQAACAAJ

  • Augusto H et al (2018) Sensitive voltammetric method for piroxicam determination in pharmaceutical, urine and tap water samples using an anodically pretreated boron-doped diamond electrode. Braz J Anal Chem 5(18):40–50

    Article  CAS  Google Scholar 

  • aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A (2016) Pharmaceuticals in the environment -global occurrence and perspectives. Environ Toxicol Chem 35(4):823–835

    Article  CAS  Google Scholar 

  • Azam AG, Zanjani BR, Mood MB (2016) Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci\:1–12

    Google Scholar 

  • Berto S et al (2018) Application of an electro-activated glassy-carbon electrode to the determination of acetaminophen (paracetamol) in surface waters. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.07.145

  • Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters. what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39(1):73–86

    Article  CAS  Google Scholar 

  • Bogue R (2017) Emerging applications driving innovations in gas sensing. Sens Rev 37(2):1–15

    Article  Google Scholar 

  • Boleda MR, Huerta-fontela M, Ventura F, Teresa Galceran M (2011) Chemosphere evaluation of the presence of drugs of abuse in tap waters. Chemosphere 84(11):1601–1607. https://doi.org/10.1016/j.chemosphere.2011.05.033

    Article  CAS  Google Scholar 

  • Bougrini M et al (2016) Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal- organic framework for tetracycline detection in honey. Food Control 59:424–429. https://doi.org/10.1016/j.foodcont.2015.06.002

    Article  CAS  Google Scholar 

  • Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116

    Article  CAS  Google Scholar 

  • Boxall ABA et al (2012) Review pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Article  Google Scholar 

  • Brett CMA (2001) Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 73(12):1969–1977

    Article  CAS  Google Scholar 

  • Buchberger WW (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218(4):603–618. https://doi.org/10.1016/j.chroma.2010.10.040

    Article  CAS  Google Scholar 

  • Bueno AM, Contento AM, Rios A (2014) Determination of sulfonamides in milk samples by HPLC with amperometric detection using a glassy carbon electrode modified with multiwalled carbon nanotubes. J Sep Sci 37:382–389

    Article  CAS  Google Scholar 

  • Cakir O, Bakhshpour M, Yilmaz F, Baysal Z (2019) Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2, 4-dichlorophenoxyacetic acid in apple samples. Mater Sci Eng C 102(April):483–491. https://doi.org/10.1016/j.msec.2019.04.056

    Article  CAS  Google Scholar 

  • Campos MSG, Sarkis JES (2018) New methodology for the analysis of volatile organic compounds (VOCs) in bioethanol by gas chromatography coupled to mass spectrometry. J Phys Conf Ser 975:012015

    Article  CAS  Google Scholar 

  • Chen D et al (2013) A core – shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole. Sensors Actuators B Chem 183:594–600. https://doi.org/10.1016/j.snb.2013.04.050

    Article  CAS  Google Scholar 

  • Chen M et al (2015) Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim Acta:1–8

    Google Scholar 

  • Chen D et al (2016) A novel aptasensor for electrochemical detection of ractopamine, clenbuterol, salbutamol, phenylethanolamine and procaterol. Biosens Bioelectron:1–18. https://doi.org/10.1016/j.bios.2016.01.025

  • Cheng N et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117(May):75–83

    Article  CAS  Google Scholar 

  • Chinna P et al (2018) Anthracene-based highly selective and sensitive fluorescent ‘turn-on’ chemodosimeter for Hg2+. ACS Omega 3:12341–12348

    Article  CAS  Google Scholar 

  • Chmielewski A (2011) Monitoring, control and effects of air pollution. ed. IntechOpen

    Google Scholar 

  • Christou A, Michael C, Fatta-kassinos D, Fotopoulos V (2018) Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors? Environ Int 114:360–364. https://doi.org/10.1016/j.envint.2018.03.003

    Article  CAS  Google Scholar 

  • Chung P-r et al (2013) Formaldehyde gas sensors: a review. Sensors 13:4468–4484

    Article  CAS  Google Scholar 

  • Ciccarone D (2017) International Journal of Drug Policy fentanyl in the US heroin supply: a rapidly changing risk environment. Int J Drug Policy 46:107–111. https://doi.org/10.1016/j.drugpo.2017.06.010

    Article  Google Scholar 

  • Danesh NM et al (2015) A novel electrochemical aptasensor based on arch- shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2015.08.017

  • Darnerud PO (2003) toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29:841–853

    Article  CAS  Google Scholar 

  • Derikvand Z et al (2016) Design of ultrasensitive bisphenol A-aptamer based on Pt nanoparticles loading to polyethyleneimine functionalized carbon nanotubes. Anal Biochem. https://doi.org/10.1016/j.ab.2016.06.007

  • Deroco PB et al (2018) Carbon black supported Au – Pd core-shell nanoparticles within a dihexadecylphosphate film for the development of hydrazine electrochemical sensor. Sensors Actuators B Chem 256:535–542. https://doi.org/10.1016/j.snb.2017.10.107

    Article  CAS  Google Scholar 

  • Djozan D, Mahkam M, Ebrahimi B (2009) Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion. J Chromatogr A 1216:2211–2219

    Article  CAS  Google Scholar 

  • Domènech-gil G et al (2017) Chemical gas sensors based on individual indium oxide nanowire. Sensors Actuators B Chem 238:447–454. https://doi.org/10.1016/j.snb.2016.07.084

    Article  CAS  Google Scholar 

  • El N et al (2018) Development of a highly sensitive and selective molecularly imprinted electrochemical sensor for sulfaguanidine detection in honey samples. J Electroanal Chem 823:647–655. https://doi.org/10.1016/j.jelechem.2018.07.011

    Article  CAS  Google Scholar 

  • Emran MY, Mohamed AS, Abdelwahab AA, Abdelmottaleb SA E-s (2018) Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. New J Chem 42:5037–5044

    Article  CAS  Google Scholar 

  • Evaggelopoulou EN, Samanidou VF (2013) Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC Cloxacillin Dicloxacillin. Food Chem 136(3–4):1322–1329. https://doi.org/10.1016/j.foodchem.2012.09.044

    Article  CAS  Google Scholar 

  • Fan M et al (2018) A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 18:1–52. https://doi.org/10.1016/j.chemosphere.2018.02.111.

  • Farajzadeh MA, Feriduni B, Afshar Mogaddam MR (2015) Development of counter current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples. Anal Chim Acta 885:122–131

    Article  CAS  Google Scholar 

  • Fatta D, Nikolaou A, Achilleos A, Meric S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. Trends Anal Chem 26(6):515–533

    Article  CAS  Google Scholar 

  • Fedeniuk RW, Mizuno M, Neiser C, Byrne CO (2015) Development of LC – MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O- ␤ – d -glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver. J Chromatogr B 991:68–78. https://doi.org/10.1016/j.jchromb.2015.04.009

    Article  CAS  Google Scholar 

  • Feier B, Gui A, Cristea C, Săndulescu R (2017) Electrochemical determination of cephalosporins using a bare boron-doped diamond electrode. Anal Chim Acta. https://doi.org/10.1016/j.aca.2017.04.050

  • Feier B et al (2019) Electrochemical sensor based on molecularly imprinted polymer for the detection of cefalexin. Biosensors 9

    Google Scholar 

  • Feiera B, Ionela I, Cristeaa C, Săndulescua R (2017) Electrochemical behaviour of several penicillins at high potential. N J Chem 41:12947–12955

    Google Scholar 

  • Fernández-Benavides DA et al (2019) A novel bismuth-based lead-free piezoelectric transducer immunosensor for carbaryl quantification. Sensors Actuators B Chem 285(August 2018):423–430

    Article  CAS  Google Scholar 

  • Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2014) Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193:216–223

    Article  CAS  Google Scholar 

  • Fu J et al (2019) Electrochemical aptasensor based on one step Co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors Actuators B Chem 287:503–509. https://doi.org/10.1016/j.snb.2019.02.057

    Article  CAS  Google Scholar 

  • Gallego M, Valca M (2003) Determination of natural and synthetic colorants in prescreened dairy samples using liquid chromatography-diode array detection. Anal Chem 75(3):685–693

    Article  Google Scholar 

  • Gan T et al (2017) An electrochemical sensor based on SiO2 @ TiO2 -embedded molecularly imprinted polymers for selective and sensitive determination of theophylline. J Solid State Electrochem 21(12):3683–3691

    Article  CAS  Google Scholar 

  • Gao L, Shi Y, Li W, Cai Y (2012) Occurrence, distribution and bioaccumulation of antibiotics in the Haihe. J Environ Monit 14:1248–1255

    Article  CAS  Google Scholar 

  • Gauquie J, Devriese L, Robbens J, De Witte B (2015) A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris. Chemosphere 138:348–356. https://doi.org/10.1016/j.chemosphere.2015.06.029

    Article  CAS  Google Scholar 

  • Gayen P, Chaplin BP (2015) Selective electrochemical detection of ciprofloxacin with a porous nafion/multi-walled carbon nanotube composite film electrode. Appl Mater Interfaces 8(3):1615–1626

    Article  CAS  Google Scholar 

  • Geng D, Kukucka P, Jogsten IE (2017) Analysis of brominated flame retardants and their derivatives by atmospheric pressure chemical ionization using gas chromatography coupled to tandem quadrupole mass spectrometry. Talanta 162(June 2016):618–624. https://doi.org/10.1016/j.talanta.2016.10.060

    Article  CAS  Google Scholar 

  • Gogoi A et al (2018) Groundwater for sustainable development occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6(January):169–180. https://doi.org/10.1016/j.gsd.2017.12.009

    Article  Google Scholar 

  • Goodchild SA et al (2019) Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal Chem 91(5):3747–3753

    Article  CAS  Google Scholar 

  • Goradel NH et al (2017) Biosensors for the detection of environmental and urban. J Cell Biochem 119(1):207–212

    Article  CAS  Google Scholar 

  • Gothwal R, Shashidhar T (2014) Review antibiotic pollution in the environment: a review. CLEAN Soil Air Water 42(9999):1–11

    Google Scholar 

  • Gros M, Rodríguez-mozaz S, Barceló D (2013) Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1292:173–188. https://doi.org/10.1016/j.chroma.2012.12.072

    Article  CAS  Google Scholar 

  • Guan H, Brewer WE, Garris ST, Morgan SL (2010) Disposable pipette extraction for the analysis of pesticides in fruit and vegetables using gas chromatography/mass spectrometry. J Chromatogr A 1217:1867–1874

    Article  CAS  Google Scholar 

  • Guo Y, Shen G, Sun X, Wang X (2015) Electrochemical aptasensor based on multiwalled carbon nanotubes and graphene for tetracycline detection. IEEE Sensors J 15(3):1951–1958

    Article  CAS  Google Scholar 

  • Hashemi P et al (2019) Reduced graphene oxide decorated on Cu / CuO-Ag nanocomposite as a high- performance material for the construction of a non-enzymatic sensor: application to the determination of carbaryl and fenamiphos pesticides. Mater Sci Eng C 102(May):764–772. https://doi.org/10.1016/j.msec.2019.05.010

    Article  CAS  Google Scholar 

  • He B-s, Chen W-b (2016) Voltammetric determination of sulfonamides with a modified glassy carbon electrode using carboxyl multiwalled carbon nanotubes. J Braz Chem Soc 27(12):2216–2225

    CAS  Google Scholar 

  • He X et al (2012) Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China. Environ Geochem Health 34:323–335

    Article  CAS  Google Scholar 

  • He Q et al (2018) Sensitive and selective detection of tartrazine based on TiO 2 -electrochemically reduced graphene oxide composite-modified electrodes. Sensors 18(1911):1–12

    Google Scholar 

  • Hernandez-Vargas G et al (2018) Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants. Biosensors 8(29):1–21

    Google Scholar 

  • Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  Google Scholar 

  • Holbrook RD, Davis JM, Scott KCK, Szakal C (2012) Detection and speciation of brominated flame retardants in high-impact polystyrene (HIPS) polymers. J Microsc 246(2):143–152

    Article  CAS  Google Scholar 

  • Holling CS, Bailey JL, Heuvel V, Kinney CA (2012) Uptake of human pharmaceuticals and personal care products by cabbage (Brassica Campestris) from fortified and biosolids-amended soils. J Environ Monit 14:3029–3036

    Article  CAS  Google Scholar 

  • Hong Y, Sharma VK, Hyunook P-c C (2015) Fast-target analysis and hourly variation of 60 pharmaceuticals in wastewater using UPLC-high resolution mass spectrometry. Arch Environ Contam Toxicol 69(4):525–534

    Article  CAS  Google Scholar 

  • Hori H, Ishimatsu S, Fueta Y (2013) Evaluation of a real-time method for monitoring volatile organic compounds in indoor air in a Japanese University. Environ Health Prev Med (2013) 18:285–292

    Article  CAS  Google Scholar 

  • Hsu CC, Whang CW (2009) Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection. J Chromatogr A 1216(49):8575–8580

    Article  CAS  Google Scholar 

  • Huang J-y et al (2016) Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly (o-Aminophenol) and graphene quantum dots. Microchim Acta 184(1):127–135. https://doi.org/10.1007/s00604-016-1982-5

    Article  CAS  Google Scholar 

  • Huerta-fontela M, Teresa M, Martin-alonso J, Ventura F (2008) Occurrence of psychoactive stimulatory drugs in wastewaters in North-Eastern Spain. Sci Total Environ 397:31–40

    Article  CAS  Google Scholar 

  • Jaishankar M et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  CAS  Google Scholar 

  • Jean J et al (2012) Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J Environ Manag 103:113–121

    Article  CAS  Google Scholar 

  • Jennifer A, Abdallah M A-e, Harrad S (2017) Pharmaceuticals and Personal Care Products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  • Jiang X et al (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23:1577–1587

    Article  CAS  Google Scholar 

  • Jiang J et al (2018) Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Appl Mater Interfaces:2–8

    Google Scholar 

  • Jiao S et al (2018) Binding properties of broad-specific monoclonal antibodies against three organophosphorus pesticides by a direct surface plasmon resonance immunosensor. Anal Bioanal Chem 410(28):7263–7273

    Article  CAS  Google Scholar 

  • Jiménez GC et al (2014) Aptamer-based label-free impedimetric biosensor for the detection of progesterone. Anal Chem 87(2):1075–1082

    Article  CAS  Google Scholar 

  • Joshi N et al (2016) Ozone sensing properties of nickel phthalocyanine: ZnO nanorod heterostructures. Proc IEEE Sens:1–3

    Google Scholar 

  • Joshi N et al (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213

    Article  CAS  Google Scholar 

  • Jung J-h et al (2012) The characteristics of the appearance and health risks of volatile organic compounds in industrial (Pohang, Ulsan) and non-industrial (Gyeongju) areas. Environ Health Toxicol 27(0):e2012012

    Article  Google Scholar 

  • Justino CIL, Duarte AC, Rocha-Santos TAP (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors 17(2918):1–25

    Google Scholar 

  • Kamilari E et al (2018) Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using total reflection X-ray fluorescence spectrometry. Food Chem Toxicol 116(part B):233–237. https://doi.org/10.1016/j.fct.2018.04.035

    Article  CAS  Google Scholar 

  • Karimian R, Piri F, Hosseini Z (2017) Magnetic molecularly imprinted nanoparticles for the solid-phase extraction of diazinon from aqueous medium, followed its determination by HPLC-UV. J Appl Biotechnol Rep 4(1):533–539

    CAS  Google Scholar 

  • Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, MeHg, As) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2016.09.016

  • Kaur M, Nagpal AK (2017) Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environ Sci Pollut Res 24:18881–18895

    Article  CAS  Google Scholar 

  • Kaur N, Thakur H, Prabhakar N (2019) Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem J 147:393–402. https://doi.org/10.1016/j.microc.2019.03.042

    Article  CAS  Google Scholar 

  • Ke H et al (2014) A fetomolar level 17 -B-stradiol electrochemical aptasensor constructed on hierachical dendritic gold modified boron-doped diamond electrode. Electrochim Acta 137:146–153. https://doi.org/10.1016/j.electacta.2014.06.014

    Article  CAS  Google Scholar 

  • Khan S et al (2018) Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React Funct Polym 122:175–182. https://doi.org/10.1016/j.reactfunctpolym.2017.11.002

    Article  CAS  Google Scholar 

  • Khor SM et al (2011) An electrochemical immunobiosensor for direct detection of veterinary drug residues in undiluted complex matrices. Electroanalysis 23(8):1797–1804

    Article  CAS  Google Scholar 

  • Kolpin D et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U. S. Streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kot-wasik A, De J, Namies J (2007) Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. Trends Anal Chem 26(6):557–568

    Article  CAS  Google Scholar 

  • Kubendhiran S et al (2018) Innovative strategy based on a novel carbon-black−β-cyclodextrin 2 nanocomposite for the simultaneous determination of the 3 anticancer drug flutamide and the environmental pollutant 4-nitrophenol. Anal Chem 90(10):6283–6291

    Article  CAS  Google Scholar 

  • Kumar N et al (2019) Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: paracetamol. Sens Bio-Sens Res 24:1–8. https://doi.org/10.1016/j.sbsr.2019.100288

    Article  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J Environ Manag 90:2354–2366

    Article  CAS  Google Scholar 

  • Larsson DGJ (2014) Antibiotics in the environment. Ups J Med Sci 119:108–112

    Article  Google Scholar 

  • Lawal O et al (2017) Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 13(10):1–16

    Article  CAS  Google Scholar 

  • Leo L et al (2017) Occurrence of azo food dyes and their effects on cellular inflammatory responses. Nutrition. https://doi.org/10.1016/j.nut.2017.08.010

  • Li J, Chen L, Lou T, Wang Y (2011) Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces 3:3936–3941

    Article  CAS  Google Scholar 

  • Li W et al (2012a) Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environ Pollut 162:56–62. https://doi.org/10.1016/j.envpol.2011.10.022

    Article  CAS  Google Scholar 

  • Li W et al (2012b) Chemosphere occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11):1307–1315. https://doi.org/10.1016/j.chemosphere.2012.05.079

    Article  CAS  Google Scholar 

  • Li X, Yu H, Xu S, Hua R (2013) Ecotoxicology and environmental safety uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicol Environ Saf 92:297–302. https://doi.org/10.1016/j.ecoenv.2013.03.010

    Article  CAS  Google Scholar 

  • Li Y et al (2015a) Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci Rep 5:33–35

    Google Scholar 

  • Li J, Liu X, Cui J, Sun J (2015b) Hydrothermal synthesis of self-assembled hierarchically tungsten oxides hollow spheres and their gas sensing properties. Appl Mater Interfaces:1–28

    Google Scholar 

  • Li Z, Zhu Z, Louis J (2018) Disposable electrochemical aptasensor based on carbon nanotubes- V2O5-chitosan nanocomposite for detection of ciprofloxaci. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2018.03.155

  • Lidia C et al (2015) Science of the total environment high sensitive multiresidue analysis of pharmaceuticals and antifungals in surface water using U-HPLC-Q-exactive orbitrap HRMS. Application to the Danube River Basin on the Romanian Territory. Sci Total Environ 532:501–511. https://doi.org/10.1016/j.scitotenv.2015.06.010

    Article  CAS  Google Scholar 

  • Lipskikh OI et al (2018) Sensors for voltammetric determination of food azo dyes – a critical review. Electrochim Acta 260:974–985. https://doi.org/10.1016/j.electacta.2017.12.027

    Article  CAS  Google Scholar 

  • Liu X et al (2012) A survey on gas sensing technology. Sensors 2:9635–9665

    Article  CAS  Google Scholar 

  • Liu J, Lu G, Ding J et al (2014a) Tissue distribution, bioconcentration, metabolism, and effects of erythromycin in crucian carp (Carassius Auratus). Sci Total Environ 490:914–920. https://doi.org/10.1016/j.scitotenv.2014.05.055

    Article  CAS  Google Scholar 

  • Liu J, Lu G, Wang Y et al (2014b) Chemosphere bioconcentration, metabolism, and biomarker responses in freshwater fish carassius auratus exposed to roxithromycin. Chemosphere 99:102–108. https://doi.org/10.1016/j.chemosphere.2013.10.036

    Article  CAS  Google Scholar 

  • Liu J et al (2015) Science of the total environment occurrence , bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci Total Environ 511:54–62. https://doi.org/10.1016/j.scitotenv.2014.12.033

    Article  CAS  Google Scholar 

  • Liu H et al (2018) Chemical AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sensors Actuators B Chem 263:94–102. https://doi.org/10.1016/j.snb.2018.01.244

    Article  CAS  Google Scholar 

  • Liu M et al (2019) Aptasensors for pesticide detection. Biosens Bioelectron 130:174–184

    Article  CAS  Google Scholar 

  • Liu Y et al (n.d.) Sensitive detection of bisphenol A based on ratiometric electrochemical aptasensor:1–22

    Google Scholar 

  • Luo L et al (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94(193101):42–45

    Google Scholar 

  • Madrid RE, Chehín R, Chen T-H, Guiseppi-Elie A (2017) Biosensors and nanobiosensors: the road to bioengineering. In: Further Understanding of the Human Machine, pp 391–462

    Google Scholar 

  • Mahajan R, Chatterjee S (2018) A simple HPLC – DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment. Environ Monit Assess:190, 327

    Google Scholar 

  • Malik R et al (2018) Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interfaces 10:34087–34097

    Article  CAS  Google Scholar 

  • Mandayo GG, Castaño E (2013) Conductometric formaldehyde gas sensors. a review: from conventional Fi Lms to nanostructured materials. Thin Solid Films:1–12. https://doi.org/10.1016/j.tsf.2013.04.083

  • Materón EM et al (2019) Graphene-based electrochemical sensors for biomolecules. In: Graphene-containing microfluidic and chip-based sensor devices for biomolecules. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815394-9.00013-3.

  • Mccall A-k et al (2015) Critical review on the stability of illicit drugs in sewers and wastewater samples. Water Res:1–38. https://doi.org/10.1016/j.watres.2015.10.040

  • Mcgrath TJ, Morrison PD, Ball AS, Clarke BO (2017) Detection of Novel Brominated Fl Ame Retardants (NBFRs) in the urban soils of Melbourne , Australia. Emerging Contaminants:1–9. https://doi.org/10.1016/j.emcon.2017.01.002

  • Merola G, Martini E, Tomassetti M, Campanella L (2014) New immunosensor for B -lactam antibiotics determination in river waste waters. Sensors Actuators B Chem 199:301–313. https://doi.org/10.1016/j.snb.2014.03.083

    Article  CAS  Google Scholar 

  • Meyer SA, Le Ru EC, Etchegoin PG (2011) Combining Surface Plasmon Resonance (SPR) spectroscopy with Surface-Enhanced Raman Scattering (SERS). Anal Chem 83:2337–2344

    Article  CAS  Google Scholar 

  • Michelini L, Reichel R, Werner W, Ghisi R (2012) Sulfadiazine uptake and effects on Salix Fragilis L. and Zea Mays L. plants. Water Air Soil Pollut 223:5243–5257

    Article  CAS  Google Scholar 

  • Miller TH, Bury NR, Owen SF, MacRae JI, Barron LP (2018) A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut 239:129–146. https://doi.org/10.1016/j.envpol.2018.04.012

    Article  CAS  Google Scholar 

  • Mishra RK et al (2018) Chemical wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants. Sensors Actuators B 273:966–972

    Article  CAS  Google Scholar 

  • Moawed EA, Radwan AM (2017) Application of acid modified polyurethane foam surface for detection and removing of organochlorine pesticides from wastewater. J Chromatogr B 1044–1045:95–102. https://doi.org/10.1016/j.jchromb.2016.12.041

    Article  CAS  Google Scholar 

  • Mohammad S, Mohammad N, Ramezani M (2016) A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron 85:509–514. https://doi.org/10.1016/j.bios.2016.05.048

    Article  CAS  Google Scholar 

  • Mohammed GI, Khraibah NH, Bashammakh AS, El-shahawi MS (2018) Electrochemical sensor for trace determination of timolol maleate drug in real samples and drug residues using nafion/carboxylated-MWCNTs nanocomposite modified glassy carbon electrode. Microchem J 143:474–483. https://doi.org/10.1016/j.microc.2018.08.011

    Article  CAS  Google Scholar 

  • Moraes JT, Salamanca-neto CAR (2017) Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchem J. https://doi.org/10.1016/j.microc.2017.06.001

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177

    Article  CAS  Google Scholar 

  • Motia S et al (2019) Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Sci Total Environ 664:647–658. https://doi.org/10.1016/j.scitotenv.2019.01.331

    Article  CAS  Google Scholar 

  • Mulyasuryani A, Prasetyawan S (2015) Organophosphate hydrolase in conductometric biosensor for the detection of organophosphate pesticides. Libertas Acad:23–27

    Google Scholar 

  • Munawar A et al (2017) Investigating nanohybrid material based on 3D CNTs @ Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.08.014

  • Muralikrishna MV (2017) Environmental management. Chapter One – Introduction

    Google Scholar 

  • Na G et al (2013) Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar Pollut Bull 69(1–2):233–237. https://doi.org/10.1016/j.marpolbul.2012.12.028

    Article  CAS  Google Scholar 

  • Nagaraj VJ, Jacobs M, Vattipalli M (2014) Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water. Environ Sci Process Impacts 16:135–140

    Article  CAS  Google Scholar 

  • Nambiar AP, Sanyal M, Shrivastav PS (2018) Simultaneous densitometric determination of eight food colors and four sweeteners in candies, jellies, beverages and pharmaceuticals by normal-phase high performance thin-layer chromatography using a single elution protocol. J Chromatogr A 1572:152–161. https://doi.org/10.1016/j.chroma.2018.08.059

    Article  CAS  Google Scholar 

  • Nguyen T, Saleh MA (2016) Detection of azo dyes and aromatic amines in women undergarment. J Environ Sci Health A 51(9):744–753

    Article  CAS  Google Scholar 

  • Noguera-oviedo K, Aga DS (2016) Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.04.058

  • Norrby SR (1991) Side-effects of quinolones: comparisons between quinolones and other antibiotics. Eur J Clin Microbiol Infect Dis 10(4):378–383

    Article  CAS  Google Scholar 

  • Nunes CN, dos Anjos VE, Quinaia SP (2017) Determination of diazepam and clonazepam in natural water – a voltammetric study. Electroanalysis 29:1–11

    Article  Google Scholar 

  • Oliveira TMBF et al (2015) Simultaneous electrochemical sensing of emerging organic contaminants in full-scale sewage treatment plants. Chem Eng J 267:347–354. https://doi.org/10.1016/j.cej.2015.01.003

    Article  CAS  Google Scholar 

  • Oplatowska-stachowiak M, Elliott CT (2015) Critical reviews in food science and nutrition food colours: existing and emerging food safety concerns. Crit Rev Food Sci Nutr Publ (April):37–41

    Google Scholar 

  • Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ J 455:250–276

    Article  CAS  Google Scholar 

  • Parrella A et al (2014) Estrogenic activity and cytotoxicity of six anticancer drugs detected in water systems. Sci Total Environ 485–486:216–222. https://doi.org/10.1016/j.scitotenv.2014.03.050

    Article  CAS  Google Scholar 

  • Picó Y, Blasco C, Font G (2004) Environmental and food applications of LC-tandem mass spectrometry in pesticide-residue analysis: an overview. Mass Spectrom Rev 23(1):45–85

    Article  CAS  Google Scholar 

  • Pilehvar S et al (2014) An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol. Sensors 14:12059–12069

    Article  CAS  Google Scholar 

  • Pilehvar S et al (2016) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2016.09.075

  • Prabowo BA, Purwidyantri A, Liu K-C (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8(80):26

    Google Scholar 

  • Pundir CS, Chauhan N (2012) Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem 429(1):19–31

    Article  CAS  Google Scholar 

  • Qin Y, Liu J, Wang G, Zhang Y (2013) Evaluation of indoor air quality based on qualitative, quantitative and olfactory analysis. Chin Sci Bull 58(9):986–991

    Article  CAS  Google Scholar 

  • Qin X et al (2015) A novel electrochemical aptasensor based on MWCNTs-BMIMPF6 and amino functionalized graphene nanocomposites film for determination of kanamycin. Anal Methods 7(13):5419–5427

    Article  CAS  Google Scholar 

  • Rapini R, Marrazza G (2017) Bioelectrochemistry electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry 118:47–61. https://doi.org/10.1016/j.bioelechem.2017.07.004

    Article  CAS  Google Scholar 

  • Rasheed T et al (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762. https://doi.org/10.1016/j.jenvman.2017.11.037

    Article  CAS  Google Scholar 

  • Raymundo-Pereira PA et al (2017) Printex 6L carbon nanoballs used in electrochemical sensors for simultaneous detection of emerging pollutants hydroquinone. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.05.121

  • Rejczak T, Tuzimski T (2015) Recent trends in sample preparation and liquid chromatography/mass spectrometry for pesticide residue analysis in food and related matrixes. J AOAC Int 98:1143–1162

    Article  CAS  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37(1):1–12

    Article  CAS  Google Scholar 

  • Roushani M, Shahdost-fard F (2016) Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater Sci Eng C 68:128–135. https://doi.org/10.1016/j.msec.2016.05.099

    Article  CAS  Google Scholar 

  • Rzymski P, Drewek A, Klimaszyk P (2017) Pharmaceutical pollution of aquatic environment: an emerging and enormous challenge. Limnol Rev 17(2):97–107

    Article  CAS  Google Scholar 

  • Sabourin L et al (2012) Science of the total environment uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci Total Environ 431:233–236. https://doi.org/10.1016/j.scitotenv.2012.05.017

    Article  CAS  Google Scholar 

  • Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: New pesticides and soil sensors, pp 519–559

    Google Scholar 

  • Samsidar A, Siddiquee S, Shaarani SM (2018) A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 71:188–201

    Article  CAS  Google Scholar 

  • Sarafraz-yazdi A, Razavi N (2015) Application of Molecularly-Imprinted Polymers in Solid-Phase Microextraction Techniques. Trends Anal Chem 73:81–90

    Article  CAS  Google Scholar 

  • Sassolas A, Prieto-simón B, Marty J-l (2012) Biosensors for pesticide detection: new trends. Am J Anal Chem 2012:210–232

    Article  CAS  Google Scholar 

  • Sayago I, Aleixandre M, Santos P (2019) Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 9(21):1–12

    Google Scholar 

  • Scotter MJ (2015) Colour additives for foods and beverages. In: Methods of analysis for food colour additive quality and safety assessment. Elsevier Ltd, York. https://doi.org/10.1016/B978-1-78242-011-8.00006-4.

  • Sharma A et al (2017) Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sensors Actuators B Chem 245:507–515. https://doi.org/10.1016/j.snb.2017.02.002

    Article  CAS  Google Scholar 

  • Sheng F, Zhang X, Wang G (2017) Novel ultrasensitive homogeneous electrochemical aptasensor based on DsDNA-templated copper nanoparticles for the detection of ractopamine. J Mater Chem B 5(1):53–61. http://xlink.rsc.org/?DOI=C6TB02020H

    Article  CAS  Google Scholar 

  • Shi Z et al (2014) Graphene based solid phase extraction combined with ultra high performance liquid chromatography – tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. J Chromatogr A 1355:219–227

    Article  CAS  Google Scholar 

  • Soltani H, Pardakhty A, Ahmadzadeh S (2016) Determination of hydroquinone in food and pharmaceutical samples using a voltammetric based sensor employing NiO nanoparticle and ionic liquids. J Mol Liq 219:63–67. https://doi.org/10.1016/j.molliq.2016.03.014

    Article  CAS  Google Scholar 

  • Sorouraddin M-h, Saadati M, Mirabi F (2015) Simultaneous determination of some common food dyes in commercial products by digital image analysis. J Food Drug Anal 23(3):447–452. https://doi.org/10.1016/j.jfda.2014.10.007

    Article  CAS  Google Scholar 

  • Spinelle L, Gerboles M, Kok G, Persijn S, Sauerwald T (2017) Review of portable and low-cost sensors for the volatile organic compounds. Sensors 17(1520):1–30

    Google Scholar 

  • Stradiotto NR, Yamanaka H, Zanoni MVB (2003) Review electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc 14(2):159–173

    Article  CAS  Google Scholar 

  • Sun X et al (2013) Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139:299–308

    Article  Google Scholar 

  • Sun Y et al (2017) Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon @ polydopamine and β -cyclodextrin. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.09.016

  • Švorc Ľ et al (2017) Advanced electrochemical platform for determination of cytostatic drug flutamide in various matrices using a boron-doped diamond electrode. Electrochim Acta 251:621–630. https://doi.org/10.1016/j.electacta.2017.08.077

    Article  CAS  Google Scholar 

  • Swager TM, Mirica KA (2019) Introduction: chemical sensors. Chem Rev 119:1–2

    Article  CAS  Google Scholar 

  • Tangahu BV et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tanoue R et al (2012) Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J Agric Food Chem 60:10203–10211

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. ed. Luch A. Springer, Basel

    Google Scholar 

  • Ternes TA (1998) Occurrence of drug in german sewage treatment plants and rivers. Water Res 32(11):3245–3260. https://doi.org/10.1016/s0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  • Thurman EM, Ferrer I, Barceló D (2001) Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Anal Chem 73(22):5441–5449

    Article  CAS  Google Scholar 

  • Timofeeva I et al (2017) On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 167:761–767. https://doi.org/10.1016/j.talanta.2017.01.008

    Article  CAS  Google Scholar 

  • Turci R, Sottani C, Spagnoli G, Minoia C (2003) Biological and environmental monitoring of hospital personnel exposed to antineoplastic agents: a review of analytical methods. J Chromatogr B 789:169–209

    Article  CAS  Google Scholar 

  • Turnipseed SB, Clark SB, Storey JM, Carr JR (2012) Analysis of veterinary drug residues in frog legs and other aquacultured species using liquid chromatography quadrupole time-of-flight mass spectrometry. J Agric Food Chem 60(18):4430–4439

    Article  CAS  Google Scholar 

  • Upan J, Reanpang P, Jakmunee J (2015) Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta 146:766–771. https://doi.org/10.1016/j.talanta.2015.06.026

    Article  CAS  Google Scholar 

  • Vasquez MI et al (2014) Environmental side effects of pharmaceutical cocktails: what we know and what we should know. J Hazard Mater 279:169–189. https://doi.org/10.1016/j.jhazmat.2014.06.069

    Article  CAS  Google Scholar 

  • Velusamy V et al (2019) Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: a sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. Talanta 192:471–477. https://doi.org/10.1016/j.talanta.2018.09.055

    Article  CAS  Google Scholar 

  • Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant – a review. Environ Int 69:28–39. https://doi.org/10.1016/j.envint.2014.03.021

    Article  CAS  Google Scholar 

  • Wang J (2002) Real-time electrochemical monitoring : toward green analytical chemistry. Acc Chem Res 35(9):811–816

    Article  CAS  Google Scholar 

  • Wang H (2015) Target-aptamer binding trigged quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at attomole level. Chem Commun 51:8377–8380

    Article  CAS  Google Scholar 

  • Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8(4):2043–2081. http://www.mdpi.com/1424-8220/8/4/2043/

    Article  CAS  Google Scholar 

  • Wang X et al (2016) Highly sensitive homogeneous electrochemical dual recycling amplification strategy highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2016.03.055

  • Wang J et al (2017) Fluorescence spectroscopy. Sensors 17(2719):1–19

    Google Scholar 

  • Wang J, Wang Z, Vieira CLZ, Wolfson JM (2019a) Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrason Sonochem 55:1–27. https://doi.org/10.1016/j.ultsonch.2019.01.017

    Article  CAS  Google Scholar 

  • Wang Q et al (2019b) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199(February):46–53

    CAS  Google Scholar 

  • Webb S, Ternes T, Gibert M, Olejniczak K (2003) Indirect human exposure to pharmaceuticals v Ia drinking water. Toxicol Lett 142:157–167

    Article  CAS  Google Scholar 

  • Wen Y, Liao X, Deng C, Liu G (2017) Imprinted voltammetric streptomycin sensor based on a glassy carbon electrode modified with electropolymerized poly (Pyrrole-3-carboxy acid) and electrochemically reduced graphene oxide. Microchim Acta. https://doi.org/10.1007/s00604-017-2089-3

  • Wong A et al (2015) Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. J Electroanal Chem 757:250–257

    Article  CAS  Google Scholar 

  • Wong A, Santos AM, Fatibello-filho O (2018) Simultaneous determination of dopamine and cysteamine by flow injection with multiple pulse amperometric detection using a boron-doped diamond electrode. Diam Relat Mater 85:68–73. https://doi.org/10.1016/j.diamond.2018.03.034

    Article  CAS  Google Scholar 

  • Wu X et al (2019) Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO2 -MnO2 sandwich nanocomposites. Talanta 198:8–14. https://doi.org/10.1016/j.talanta.2019.01.082

    Article  CAS  Google Scholar 

  • Xiong P et al (2012) an ultrasensitive electrochemical immunosensor for alpha-fetoprotein using an envision complex-antibody copolymer as a sensitive label. Materials 5(12):2757–2772. http://www.mdpi.com/1996-1944/5/12/2757

    Article  CAS  Google Scholar 

  • Xu W et al (2014) A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on GR–PANI and PAMAM–Au nanocomposites. New J Chem 38:4931–4937. https://doi.org/10.1039/c4nj00858h

    Article  CAS  Google Scholar 

  • Xu Y et al (2015) A label-free and signal-on electrochemical aptasensor for ultrasensitive kanamycin detection based on exonuclease recycling cleavage. Anal Methods 8:726–730

    Article  CAS  Google Scholar 

  • Xu G et al (2019) Chemical dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sensors Actuators B Chem 287:428–436

    Article  CAS  Google Scholar 

  • Yan Z et al (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57. https://doi.org/10.1016/j.bios.2015.11.019

    Article  CAS  Google Scholar 

  • Yan X, Li H, Su X (2018) Review of Optical Sensors for Pesticides. Trends Anal Chem 103:1–20

    Article  CAS  Google Scholar 

  • Yang G, Zhao F (2015) Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes @ molecularly imprinted polymer. Biosens Bioelectron 64:416–422. https://doi.org/10.1016/j.bios.2014.09.041

    Article  CAS  Google Scholar 

  • Yang AZ, Ding X, Guo Q, Wang Y (2017) Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.07.119

  • Yaseen T, Hongbin P, Sun D-w (2019) fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta 196:537–545. https://doi.org/10.1016/j.talanta.2018.12.030

    Article  CAS  Google Scholar 

  • Yu P et al (2016) A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens Bioelectron 79:22–28. https://doi.org/10.1016/j.bios.2015.12.007

    Article  CAS  Google Scholar 

  • Zhang S et al (2017) A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides. Talanta 166(January):46–53. https://doi.org/10.1016/j.talanta.2017.01.042

    Article  CAS  Google Scholar 

  • Zhang W-j et al (2019a) Synthesis and application of novel molecularly imprinted solid phase extraction materials based on carbon nanotubes for determination of carbofuran in human serum by high performance liquid chromatography. J Agric Food Chem 67:5105–5112

    Article  CAS  Google Scholar 

  • Zhang Z et al (2019b) A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels. Chemosphere 225:282–287. https://doi.org/10.1016/j.chemosphere.2019.03.033

    Article  CAS  Google Scholar 

  • Zhao J-l et al (2015a) Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environ Pollut 198:15–24. https://doi.org/10.1016/j.envpol.2014.12.026

    Article  CAS  Google Scholar 

  • Zhao Y et al (2015b) An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Anal Methods (6):1–6. https://doi.org/10.1039/C4AY03055A

  • Zhou L, Wang J, Li D, Li Y (2014a) An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem 162:34–40. https://doi.org/10.1016/j.foodchem.2014.04.058

    Article  CAS  Google Scholar 

  • Zhou X, Guo J, Zhang W, Zhou P (2014b) Occurrences and inventories of heavy metals and brominated flame retardants in wastes from printed circuit board production. Environ Sci Pollut Res 21(17):10294–10306

    Article  CAS  Google Scholar 

  • Zhou N et al (2015) A label-free electrochemical aptasensor for the detection of kanamycin in milk. Anal Methods 7:1991–1996. https://doi.org/10.1039/C4AY02710H

    Article  CAS  Google Scholar 

  • Zhu S, Zhou J, Jia H, Zhang H (2017) Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chem 243:351–356. https://doi.org/10.1016/j.foodchem.2017.09.141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support granted by FAPESP (proc. 2016/0991-5, 2013/14262-7 and proc. 2016/23474-6) and CAPES (finance code 001).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Materon, E.M., Ibáñez-Redín, G., Joshi, N., Gonçalves, D., Oliveira, O.N., Faria, R.C. (2020). Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. In: Kumar Tuteja, S., Arora, D., Dilbaghi, N., Lichtfouse, E. (eds) Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-38101-1_3

Download citation

Publish with us

Policies and ethics