Skip to main content

Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction

  • Chapter
  • First Online:
Myosins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1239))

Abstract

Inside the cellular environment, molecular motors can work in concert to conduct a variety of important physiological functions and processes that are vital for the survival of a cell. However, in order to decipher the mechanism of how these molecular motors work, single-molecule microscopy techniques have been popular methods to understand the molecular basis of the emerging ensemble behavior of these motor proteins.

In this chapter, we discuss various single-molecule biophysical imaging techniques that have been used to expose the mechanics and kinetics of myosins. The chapter should be taken as a general overview and introductory guide to the many existing techniques; however, since other chapters will discuss some of these techniques more thoroughly, the readership should refer to those chapters for further details and discussions. In particular, we will focus on scattering-based single-molecule microscopy methods, some of which have become more popular in the recent years and around which the work in our laboratories has been centered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksel T, Choe Y, Sutton S, Ruppel KM, Spudich JA (2015) Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. Cell Rep 11(6):910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K Jr, Ishiwata S (2002) Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9(6):464–467

    Article  CAS  PubMed  Google Scholar 

  • Ali MY, Krementsova EB, Kennedy GG, Mahaffy R, Pollard TD, Trybus KM, Warshaw DM (2007) Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci U S A 104(11):4332–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29(20):203002

    Article  PubMed  Google Scholar 

  • Ando T (2014) High-speed AFM imaging. Curr Opin Struct Biol 28:63–68

    Article  CAS  PubMed  Google Scholar 

  • Ando T (2018) High-speed atomic force microscopy and its future prospects. Biophys Rev 210(2):285–292

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414

    Article  CAS  PubMed  Google Scholar 

  • Andrecka J, Ortega Arroyo J, Takagi Y, de Wit G, Fineberg A, MacKinnon L, Young G, Sellers JR, Kukura P (2015) Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. elife 4. https://doi.org/10.7554/eLife.05413.

  • Ashkin A, Dziedzic JM (1975) Optical levitation of liquid drops by radiation pressure. Science 187(4181):1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM (1985) Observation of radiation-pressure trapping of particles by alternating light beams. Phys Rev Lett 54(12):1245–1248

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM (1989) Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci U S A 86(20):7914–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Steven C (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150):769–771

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Schütze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348(6299):346–348

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D (2001) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D (2008) Total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221

    Article  CAS  PubMed  Google Scholar 

  • Balci H, Ha T, Sweeney HL, Selvin PR (2005) Interhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model. Biophys J 89(1):413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron PA, Willeke K (2001) Aerosol measurement : principles, techniques, and applications, 2nd edn. Wiley, New York/Chichester, p 463

    Google Scholar 

  • Beausang JF, Sun Y, Quinlan ME, Forkey JN, Goldman YE (2012) Orientation and rotational motions of single molecules by polarized total internal reflection fluorescence microscopy (polTIRFM). Cold Spring Harb Protoc:pii: pdb.top069344. https://doi.org/10.1101/pdb.top069344

    Article  PubMed  Google Scholar 

  • Beausang JF, Shroder DY, Nelson PC, Goldman YE (2013) Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys J 104(6):1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bing W, Knott A, Marston SB (2000) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments. Biochem J 350:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348(6299):348–352

    Article  CAS  PubMed  Google Scholar 

  • Brizendine RK, Alcala DB, Carter MS, Haldeman BD, Facemyer KC, Baker JE, Cremo CR (2015) Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges. Proc Natl Acad Sci U S A 112(36):11235–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizendine RK, Sheehy GG, Alcala DB, Novenschi SI, Baker JE, Cremo CR (2017) A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro. Sci Adv 3(12):eaao2267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capitanio M, Pavone FS (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105(6):1293–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci U S A 103(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9(10):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Nakamura M, Schindler TD, Parker D, Bryant Z (2012) Engineering controllable bidirectional molecular motors based on myosin. Nat Nanotechnol 7(4):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102(5):1419–14123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole D, Young G, Weigel A, Sebesta A, Kukura P (2017) Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4(2):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppin CM, Finer JT, Spudich JA, Vale RD (1996) Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc Natl Acad Sci U S A 93(5):1913–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis ASG (1964) The mechanism of adhesion of cells to glass. J Cell Biol 20(2):199–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniz AA, Mukhopadhyay S, Lemke EA (2007) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5(18):15–45

    Article  PubMed Central  CAS  Google Scholar 

  • Dunn AR, Spudich JA (2007) Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 14(3):246–248

    Article  CAS  PubMed  Google Scholar 

  • Dupuis DE, Guilford WH, Wu J, Warshaw DM (1997) Actin filament mechanics in the laser trap. J Muscle Res Cell Motil 18(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467):113–119

    Article  CAS  PubMed  Google Scholar 

  • Forkey JN, Quinlan ME, Goldman YE (2000) Protein structural dynamics by single-molecule fluorescence polarization. Prog Biophys Mol Biol 74(1–2):1–35

    Article  CAS  PubMed  Google Scholar 

  • Forkey JN, Quinlan ME, Shaw MA, Corrie JE, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422(6930):399–404

    Article  CAS  PubMed  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–559

    Article  CAS  PubMed  Google Scholar 

  • Furuta K, Furuta A (2018) Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics. Curr Opin Biotechnol 51:39–46

    Article  CAS  PubMed  Google Scholar 

  • Furuta A, Amino M, Yoshio M, Oiwa K, Kojima H, Furuta K (2017) Creating biomolecular motors based on dynein and actin-binding proteins. Nat Nanotechnol 12(3):233–237

    Article  CAS  PubMed  Google Scholar 

  • Gage SH (1920) Modern dark-field microscopy and the history of its development. Trans Am Microsc Soc 39(2):95

    Article  Google Scholar 

  • Gardini L, Heissler SM, Arbore C, Yang Y, Sellers JR, Pavone FS, Capitanio M (2018) Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat Commun 9(1):2844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23(1):7–9

    Article  CAS  PubMed  Google Scholar 

  • Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci U S A 101(17):6462–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg MJ, Moore JR (2010) The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton (Hoboken) 67:273–285

    Article  CAS  Google Scholar 

  • Greenberg MJ, Lin T, Goldman YE, Shuman H, Ostap EM (2012) Myosin IC generates power over a range of loads via a new tension-sensing mechanism. Proc Natl Acad Sci U S A 109(37):E2433–E2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg MJ, Lin T, Shuman H, Ostap EM (2015) Mechanochemical tuning of myosin-I by the N-terminal region. Proc Natl Acad Sci U S A 112(26):E3337–E3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilford WH, Dupuis DE, Kennedy G, Wu J, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72(3):1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen PM, Tolic-Nørrelykke IM, Flyvbjerg H, Berg-Sørensen K (2006) Tweezercalib 2.1: faster version of MatLab package for precise calibration of optical tweezers. Comput Phys Commun 175:572–573

    Article  CAS  Google Scholar 

  • Hecht E (1998) Optics, vol 1. Addison Wesley Longman, Boston

    Google Scholar 

  • Homsher E, Wang F, Sellers JR (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Phys 262(3 Pt 1):C714–C723

    Article  CAS  Google Scholar 

  • Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundt N, Steffen W, Pathan-Chhatbar S, Taft MH, Manstein DJ (2016) Load-dependent modulation of non-muscle myosin-2A function by tropomyosin 4.2. Sci Rep 6:20554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes TR, Block SM, White BT, Spudich JA (1987) Movement of myosin fragments in vitro: domains involved in force production. Cell 48(6):953–963

    Article  CAS  PubMed  Google Scholar 

  • Ishijima A, Doi T, Sakurada K, Yanagida T (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352(6333):301–306

    Article  CAS  PubMed  Google Scholar 

  • Ishijima A, Harada Y, Kojima H, Funatsu T, Higuchi H, Yanagida T (1994) Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem Biophys Res Commun 199(2):1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Ishijima A, Kojima H, Higuchi H, Harada Y, Funatsu T, Yanagida T (1996) Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys J 70(1):383–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92(2):161–171

    Article  CAS  PubMed  Google Scholar 

  • Kad NM, Trybus KM, Warshaw DM (2008) Load and pi control flux through the branched kinetic cycle of myosin V. J Biol Chem 283(25):17477–17484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamimura S, Takahashi K (1981) Direct measurement of the force of microtubule sliding in flagella. Nature 293(5833):566–568

    Article  CAS  PubMed  Google Scholar 

  • Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334(6177):74–76

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397(6715):129–134

    Article  CAS  PubMed  Google Scholar 

  • Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog Biophys Mol Biol 77(1):45–72

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6(3–4):237–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodera N, Ando T (2018) Direct imaging of walking myosin V by high-speed atomic force microscopy. Methods Mol Biol 1805:103–122

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76

    Article  CAS  PubMed  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to glass surface. Proc Natl Acad Sci U S A 83:6272–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQ, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196:399–416

    Article  CAS  PubMed  Google Scholar 

  • Kukura P, Celebrano M, Renn A, Sandoghdar V (2009a) Imaging a single quantum dot when it is dark. Nano Lett 9(3):926–929

    Article  CAS  PubMed  Google Scholar 

  • Kukura P, Ewers H, Müller C, Renn A, Helenius A, Sandoghdar V (2009b) High-speed nanoscopic tracking of the position and orientation of a single virus. Nat Methods 6(12):923–927

    Article  CAS  PubMed  Google Scholar 

  • Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321(5885):133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauzon AM, Tyska MJ, Rovner AS, Freyzon Y, Warshaw DM, Trybus KM (1998) A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil 19(8):825–837

    Article  CAS  PubMed  Google Scholar 

  • Lee KG, Chen XW, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S (2011) A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photonics 5:166–169

    Article  CAS  Google Scholar 

  • Lewalle A, Steffen W, Stevenson O, Ouyang Z, Sleep J (2008) Single-molecule measurement of the stiffness of the rigor myosin head. Biophys J 94(6):2160–2169

    Article  CAS  PubMed  Google Scholar 

  • Liebel M, Hugall JT, van Hulst NF (2017) Ultrasensitive label-free Nanosensing and high-speed tracking of single proteins. Nano Lett 17(2):1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Limozin L, Sengupta K (2009) Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10(16):2752–2768

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kawana M, Song D, Ruppel KM, Spudich JA (2018) Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat Struct Mol Biol 25(6):505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta AD, Finer JT, Spudich JA (1997) Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci U S A 94(15):7927–7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400(6744):590–593

    Article  CAS  PubMed  Google Scholar 

  • Melli L, Billington N, Sun SA, Bird JE, Nagy A, Friedman TB, Takagi Y, Sellers JR (2018) Bipolar filaments of human nonmuscle myosin 2-a and 2-B have distinct motile and mechanical properties. Elife 7:pii: e32871

    Article  Google Scholar 

  • Mickolajczyk KJ, Hancock WO (2018) High-resolution single-molecule kinesin assays at kHz frame rates. Methods Mol Biol 1805:123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445

    Article  Google Scholar 

  • Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DC (1995) Movement and force produced by a single myosin head. Nature 378(6553):209–212

    Article  CAS  PubMed  Google Scholar 

  • Moore JR, Krementsova EB, Trybus KM, Warshaw DM (2001) Myosin V exhibits a high duty cycle and large unitary displacement. J Cell Biol 155(4):625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy A, Piszczek G, Sellers JR (2009) Extensibility of the extended tail domain of processive and nonprocessive myosin V molecules. Biophys J 97(12):3123–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy A, Takagi Y, Billington N, Sun SA, Hong DK, Homsher E, Wang A, Sellers JR (2013) Kinetic characterization of nonmuscle myosin IIb at the single molecule level. J Biol Chem 288(1):709–722

    Article  CAS  PubMed  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  PubMed  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa S, Arimoto I, Ikezaki K, Sugawa M, Ueno H, Komori T, Iwane AH, Yanagida T (2010) Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142(6):879–888

    Article  CAS  PubMed  Google Scholar 

  • Norstrom MF, Smithback PA, Rock RS (2010) Unconventional processive mechanics of non-muscle myosin IIB. J Biol Chem 285(34):26326–26334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmachi M, Komori Y, Iwane AH, Fujii F, Jin T, Yanagida T (2012) Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc Natl Acad Sci U S A 109(14):5294–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Tanaka H, Iwane AH, Kitamura K, Ikebe M, Yanagida T (2007) The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem Biophys Res Commun 354(2):379–384

    Article  CAS  PubMed  Google Scholar 

  • Ortega Arroyo J, Andrecka J, Spillane KM, Billington N, Takagi Y, Sellers JR, Kukura P (2014) Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett 14(4):2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131(4):784–795

    Article  CAS  PubMed  Google Scholar 

  • Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495

    Article  CAS  PubMed  Google Scholar 

  • Ploem JS (1975) Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface. Blackwell, Oxford

    Google Scholar 

  • Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM (2012) Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science 337(6099):1215–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell TJ, Sweeney HL, Spudich JA (2005) A force-dependent state controls the coordination of processive myosin V. Proc Natl Acad Sci U S A 102(39):13873–13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci U S A 101(31):11298–11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rädler J, Sackmann E (1993) Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J Phys II 3:727–748

    Google Scholar 

  • Rädler JO, Feder TJ, Strey HH, Sackmann E (1995) Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(5):4526–4536

    PubMed  Google Scholar 

  • Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126(2):335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97(17):9482–9486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584

    Article  CAS  PubMed  Google Scholar 

  • Rock RS, Rice SE, Wells AL, Purcell TJ, Spudich JA, Sweeney HL (2001) Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98(24):13655–13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SA, Quinlan ME, Forkey JN, Goldman YE (2005) Rotational motions of macro-molecules by single-molecule fluorescence microscopy. Acc Chem Res 38(7):583–593

    Article  CAS  PubMed  Google Scholar 

  • Ruhnow F, Zwicker D, Diez S (2011) Tracking single particles and elongated filaments with nanometer precision. Biophys J 100(11):2820–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Amitani I, Yokota E, Ando T (2000) Direct observation of processive movement by individual myosin V molecules. Biochem Biophys Res Commun 272(2):586–590

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Wang F, Schmitz S, Xu Y, Xu Q, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278(31):29201–29207

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Yildiz A, Selvin PR, Sellers JR (2005) Step-size is determined by neck length in myosin V. Biochemistry 44(49):16203–16210

    Article  CAS  PubMed  Google Scholar 

  • Santos NC, Castanho MA (2004) An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107(2):133–149

    Article  CAS  PubMed  Google Scholar 

  • Sellers JR, Kachar B (1990) Polarity and velocity of sliding filaments: control of direction by actin and of speed by myosin. Science 249(4967):406–408

    Article  CAS  PubMed  Google Scholar 

  • Sellers JR, Veigel C (2010) Direct observation of the myosin-Va power stroke and its reversal. Nat Struct Mol Biol 17(5):590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellers JR, Cuda G, Wang F, Homsher E (1993) Myosin-specific adaptations of the motility assay 39:23–49

    CAS  Google Scholar 

  • Seol Y, Neuman KC (2018) Combined magnetic tweezers and micro-mirror Total internal reflection fluorescence microscope for single-molecule manipulation and visualization. Methods Mol Biol 1665:297–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303(5912):31–35

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MP, Block SM, Spudich JA (1986) Myosin movement in vitro: a quantitative assay using oriented actin cables from Nitella. Methods Enzymol 134:531–544

    Article  CAS  PubMed  Google Scholar 

  • Shepherd GM, Corey DP, Block SM (1990) Actin cores of hair-cell stereocilia support myosin motility. Proc Natl Acad Sci U S A 87(21):8627–8631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siedentopf H, Zsigmondy R (1903) Über Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaesern. Annalen der Physik 10:1–39

    CAS  Google Scholar 

  • Smith DA, Steffen W, Simmons RM, Sleep J (2001) Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-hidden-Markov method. Biophys J 81(5):2795–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder GE, Sakamoto T, Hammer JA 3rd, Sellers JR, Selvin PR (2004) Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via Telemark configuration. Biophys J 87(3):1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Schroeder HW 3rd., Beausang JF, Homma K, Ikebe M, Goldman YE (2007) Myosin VI walks “wiggly” on actin with large and variable tilting. Mol Cell 28(6):954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Sato O, Ruhnow F, Arsenault ME, Ikebe M, Goldman YE (2010) Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 17(4):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung J, Nag S, Mortensen KI, Vestergaard CL, Sutton S, Ruppel K, Flyvbjerg H, Spudich JA (2015) Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules. Nat Commun 6:7931

    Article  CAS  PubMed  Google Scholar 

  • Sung J, Mortensen KI, Spudich JA, Flyvbjerg H (2017) How to measure load-dependent kinetics of individual motor molecules without a force-clamp. Methods Enzymol 582:1–29

    Article  CAS  PubMed  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448):721–727

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90(4):1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Farrow RE, Billington N, Nagy A, Batters C, Yang Y, Sellers JR, Molloy JE (2014) Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proc Natl Acad Sci U S A 111(18):E1833–E1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Ishijima A, Honda M, Saito K, Yanagida T (1998) Orientation dependence of displacements by a single one-headed myosin relative to the actin filament. Biophys J 75(4):1886–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Homma K, White HD, Yanagida T, Ikebe M (2008) Smooth muscle myosin phosphorylated at single head shows sustained mechanical activity. J Biol Chem 283(23):15611–15618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toprak E, Enderlein J, Syed S, McKinney SA, Petschek RG, Ha T, Goldman YE, Selvin PR (2006) Defocused orientation and position imaging (DOPI) of myosin V. Proc Natl Acad Sci U S A 103(17):6495–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchihashi T, Scheuring S (2018) Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 1862(2):229–240

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Nishikawa S, Iino R, Tabata KV, Sakakihara S, Yanagida T, Noji H (2010) Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 98(9):2014–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale RD, Szent-Gyorgyi AG, Sheetz MP (1984) Movement of scallop myosin on Nitella actin filaments: regulation by calcium. Proc Natl Acad Sci U S A 81(21):6775–6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veigel C, Schmidt CF (2011) Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12(3):163–176

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75(3):1424–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398(6727):530–533

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2002) The gated gait of the processive molecular motor, myosin V. Nat Cell Biol 4(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7(9):861–869

    Article  CAS  PubMed  Google Scholar 

  • Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2(4):1066–1076

    Article  CAS  Google Scholar 

  • Warshaw DM, Desrosiers JM, Work SS, Trybus KM (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 111:453–463

    Article  CAS  PubMed  Google Scholar 

  • Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88(5):L30–L32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe TM, Iwane AH, Tanaka H, Ikebe M, Yanagida T (2010) Mechanical characterization of one-headed myosin-V using optical tweezers. PLoS One 5(8):e12224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wriedt T (2012) In: Hergert W, Wriedt T (eds) Mie theory: a review, vol 169. Springer, Berlin/Heidelberg, pp 53–71

    Chapter  Google Scholar 

  • Yanagida T, Ishii Y, Ishijima A (2011) Single-molecule measurements using microneedles. Methods Mol Biol:143–159

    Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Tomishige M, Vale RD, Selvin PR (2004a) Kinesin walks hand-over-hand. Science 303(5658):676–678

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Park H, Safer D, Yang Z, Chen LQ, Selvin PR, Sweeney HL (2004b) Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J Biol Chem 279(36):37223–37226

    Article  CAS  PubMed  Google Scholar 

  • Young G, Kukura P (2019) Interferometric scattering microscopy. Annu Rev Phys Chem 70:301–322. https://doi.org/10.1146/annurev-physchem-050317-021247

    Article  CAS  PubMed  Google Scholar 

  • Young G, Hundt N, Cole D, Fineberg A, Andrecka J, Tyler A, Olerinyova A, Ansari A, Marklund EG, Collier MP, Chandler SA, Tkachenko O, Allen J, Crispin M, Billington N, Takagi Y, Sellers JR, Eichmann C, Selenko P, Frey L, Riek R, Galpin MR, Struwe WB, Benesch JLP, Kukura P (2018) Quantitative mass imaging of single biological macromolecules. Science 360(6387):423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. James R. Sellers (NHLBI, NIH) for critical reading of the chapter, as well as for helpful discussions and ideas. Y.T. was supported by the intramural funds from the NHLBI, NIH (Grant HL 004229). N.H. was supported by a DFG (German Research Foundation) research fellowship (HU 2462/1-1) and later by a DFG return grant (HU2462/3-1). A.F. was supported by a ERC starting investigator grant (nanoscope, 337757).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuharu Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takagi, Y., Hundt, N., Fineberg, A. (2020). Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction. In: Coluccio, L. (eds) Myosins. Advances in Experimental Medicine and Biology, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-38062-5_6

Download citation

Publish with us

Policies and ethics