Skip to main content

Piezoelectric Multi-Frequency Nonlinear MEMS Converter for Energy Harvesting from Broadband Vibrations

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

Abstract

This paper proposes a MEMS piezoelectric converter for energy harvesting from vibrations which exploits nonlinear effects to broaden the operating bandwidth. The converter is composed of an array of cantilevers with different geometric dimensions. Piezoelectric layer and electrodes have been deposited on the cantilevers by a custom low-curing temperature post process. Nonlinearity is achieved by the magnetic interaction of a magnet and ferromagnetic particles deposited on the cantilever tips. Preliminary results show that the converter behaves like a nonlinear system and a downshift of the resonant frequency of the cantilevers with respect to the linear resonant frequency is observed, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Čolaković A, Hadžialić M (2018) Internet of things (IoT): a review of enabling technologies, challenges, and open research issues. Comput Netw 144:17ā€“39

    ArticleĀ  Google ScholarĀ 

  2. BaĆ¹ M, Ferrari M, Ferrari V (2019) Magnet-less electromagnetic contactless interrogation technique for unwired conductive resonators. Elec Lett 55(11):642ā€“644

    ArticleĀ  Google ScholarĀ 

  3. Demori M, BaĆ¹ M, Ferrari M, Ferrari V (2018) Electronic technique and circuit topology for accurate distance-independent contactless readout of passive LC sensors. AEU Int J Electron Commun 92:82ā€“85

    ArticleĀ  Google ScholarĀ 

  4. BaĆ¹ M, Ferrari M, Ferrari V (2017) Analysis and validation of contactless time-gated interrogation technique for quartz resonator sensors. Sensors 17(6):1264

    ArticleĀ  Google ScholarĀ 

  5. Demori M, BaĆ¹ M, Dalola S, Ferrari M, Ferrari V (2019) Low-requency RFID signal and power transfer circuitry for capacitive and resistive mixed sensor array. Electronics 8(6): 675

    ArticleĀ  Google ScholarĀ 

  6. Demori M, BaĆ¹ M, Ferrari M, Ferrari V (2018) Interrogation techniques and interface circuits for coil-coupled passive sensors. Micromachines 9(9):449

    ArticleĀ  Google ScholarĀ 

  7. Ferrari M, BaĆ¹ M, Tonoli E, Ferrari V (2013) Piezoelectric resonant sensors with contactless interrogation for mass-sensitive and acoustic-load detection. Sens Actuators Phys 202:100ā€“105

    ArticleĀ  Google ScholarĀ 

  8. Yildirim T, Ghayesh MH, Li W, Alici G (2017) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew Sustain Energy Rev 71:435ā€“449

    ArticleĀ  Google ScholarĀ 

  9. Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1ā€“18

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21(18):1867ā€“1897

    ArticleĀ  Google ScholarĀ 

  11. Zhu D, Tudor MJ, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:1ā€“29

    Google ScholarĀ 

  12. Ferrari M, BaĆ¹ M, Cerini F, Ferrari V (2012) Impact-enhanced multi-beam piezoelectric converter for energy harvesting in autonomous sensors. Procedia Eng 47:418ā€“421

    ArticleĀ  Google ScholarĀ 

  13. Alghisi D, Dalola S, Ferrari M, Ferrari V (2015) Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion. Sens Actuators Phys 233:569ā€“581

    ArticleĀ  Google ScholarĀ 

  14. AndĆ² B, Baglio S, BaĆ¹ M, Bulsara AR, Ferrari V, Ferrari M, Lā€™Episcopo G (2012) A nonlinear energy harvester by direct printing technology. Procedia Eng 47:933ā€“936

    ArticleĀ  Google ScholarĀ 

  15. Demori M, Ferrari M, Bonzanini A, Poesio P, Ferrari V (2017) Autonomous sensors powered by energy harvesting by von Karman vortices in airflow. Sensors 17(9):2100

    ArticleĀ  Google ScholarĀ 

  16. Ferrari M, Alghisi D, BaĆ¹ M, Ferrari V (2012) Nonlinear multi-frequency converter array for vibration energy harvesting in autonomous sensors. Procedia Eng 47:410ā€“413

    ArticleĀ  Google ScholarĀ 

  17. Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42:277ā€“282

    ArticleĀ  Google ScholarĀ 

  18. Kaajakari T, Mattila A, Oja A, SeppƤ H (2004) Nonlinear limits for single-crystal silicon microresonators. J Microelectromech Syst 13(5):715ā€“724

    ArticleĀ  Google ScholarĀ 

  19. BaĆ¹ M, Ferrari M, Tonoli E, Ferrari V (2011) Sensors and energy harvesters based on piezoelectric thick films. Procedia Eng 25:737ā€“744

    ArticleĀ  Google ScholarĀ 

  20. Ferrari M, Ferrari V, Guizzetti M, Marioli D (2010) Piezoelectric low-curing-temperature ink for sensors and power harvesting. Lect Notes Electr Eng 54:77ā€“81

    ArticleĀ  Google ScholarĀ 

  21. AndĆ² B, Baglio S, Bulsara AR, Marletta V, Ferrari V, Ferrari M (2015) A low-cost snap-through-buckling inkjet-printed device for vibrational energy harvesting. IEEE Sens J 15(6):3209ā€“3220

    ArticleĀ  ADSĀ  Google ScholarĀ 

  22. Alghisi D, Ferrari V, Ferrari M, Crescini D, Touati F, Mnaouer AB (2017) Single-and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sens Actuators Phys 264:234ā€“246

    ArticleĀ  Google ScholarĀ 

  23. Alghisi D, Ferrari V, Ferrari M, Touati F, Crescini D, Mnaouer AB (2017) A new nano-power trigger circuit for battery-less power management electronics in energy harvesting systems. Sens Actuators Phys 263:305ā€“316

    ArticleĀ  Google ScholarĀ 

  24. Ferrari M, Ferrari V, Guizzetti M, Marioli D (2010) Investigation on electrical output combination options in a piezoelectric multifrequency converter array for energy harvesting in autonomous sensors. In: Proceedings 1st international conference on sensor device technologies and applications, pp 258ā€“263

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. BaĆ¹ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

BaĆ¹, M., Ferrari, M., Ferrari, V. (2020). Piezoelectric Multi-Frequency Nonlinear MEMS Converter for Energy Harvesting from Broadband Vibrations. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_40

Download citation

Publish with us

Policies and ethics