Skip to main content

A Mechanostatistical Approach to Multiscale Computational Bone Remodelling

  • Chapter
  • First Online:
The Computational Mechanics of Bone Tissue

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 35))

  • 454 Accesses

Abstract

Computational models in biomechanics are generally unable to incorporate mechanical and anatomical data over the entire range of relevant spatial scales. This chapter proposes the construction of a framework, which unites several methodologies that operate on traditionally different aspects of bone remodelling, bridging the gap between previously incompatible data. The presented framework is used to solve the load adaptation response of the femoral neck as an application and consists of passing data from different sources across a multitude of spatial scales to solve for both organ-level and Haversian-level biomechanical states. The solutions are then stored in a database, to be utilised by a statistical method which can quickly estimate new load adaptation responses for which solutions were not previously generated, cutting down computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frost HM (2000) The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18(6):305–316

    Article  CAS  Google Scholar 

  2. Fernandez JW, Das R, Cleary PW, Hunter PJ, Thomas CD, Clement JG (2013) Using smooth particle hydrodynamics to investigate femoral cortical bone remodelling at the Haversian level. Int J Numer Methods Biomed Eng 29(1):129–143. https://doi.org/10.1002/cnm.2503

    Article  CAS  Google Scholar 

  3. McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40(6):1381–1391. https://doi.org/10.1016/j.jbiomech.2006.05.007

    Article  PubMed  Google Scholar 

  4. Beaupre GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop Res: Off Publ Orthop Res Soc 8(5):662–670. https://doi.org/10.1002/jor.1100080507

    Article  CAS  Google Scholar 

  5. Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42(7):830–837. https://doi.org/10.1016/j.jbiomech.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  6. Pivonka P, Buenzli PR, Scheiner S, Hellmich C, Dunstan CR (2013) The influence of bone surface availability in bone remodelling—a mathematical model including coupled geometrical and biomechanical regulations of bone cells. Eng Struct 47:134–147. https://doi.org/10.1016/j.engstruct.2012.09.006

    Article  Google Scholar 

  7. Turner AW, Gillies RM, Sekel R, Morris P, Bruce W, Walsh WR (2005) Computational bone remodelling simulations and comparisons with DEXA results. J Orthopaed Res : Off Publ Orthop Res Soc 23(4):705–712. https://doi.org/10.1016/j.orthres.2005.02.002

    Article  CAS  Google Scholar 

  8. Hambli R, Katerchi H, Benhamou CL (2011) Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10(1):133–145. https://doi.org/10.1007/s10237-010-0222-x

    Article  PubMed  Google Scholar 

  9. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia

    Google Scholar 

  10. Wang X, Thomas CD, Clement JG, Das R, Davies H, Fernandez JW (2015) A mechanostatistical approach to cortical bone remodelling: an equine model. Biomech Model Mechanobiol 15(1):29–42. https://doi.org/10.1007/s10237-015-0669-x

    Article  CAS  PubMed  Google Scholar 

  11. Ackerman MJ, Spitzer VM, Scherzinger AL, Whitlock DG (1995) The Visible Human data set: an image resource for anatomical visualization. Medinfo. MEDINFO 8(Pt 2):1195–1198

    PubMed  Google Scholar 

  12. Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24(1):57–64

    Article  CAS  Google Scholar 

  13. Sartori M, Reggiani M, Lloyd DG, Pagello E (2011) A neuromusculoskeletal model of the human lower limb: towards EMG-driven actuation of multiple joints in powered orthoses. In: IEEE international conference on rehabilitation robotics [proceedings] 2011, 5975441 (2011). https://doi.org/10.1109/icorr.2011.5975441

  14. Gray H (1918) Anatomy of the human body, 20th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  15. Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M (2010) Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve 42(3):438–441. https://doi.org/10.1002/mus.21723

    Article  Google Scholar 

  16. Herzog W (2000) Skeletal muscle mechanics: from mechanisms to function. Wiley, Chichester

    Google Scholar 

  17. Smit TH, Huyghe JM, Cowin SC (2002) Estimation of the poroelastic parameters of cortical bone. J Biomech 35(6):829–835

    Article  Google Scholar 

  18. Hayes WC, Keer LM, Herrmann G, Mockros LF (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551

    Article  CAS  Google Scholar 

  19. Brown TD, Ferguson AB Jr (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51(3):429–437

    Article  CAS  Google Scholar 

  20. U.S. FDA Cellular Tissue and Gene Therapies Advisory Committee: Meeting #38 (2005) Cellular products for joint surface repair briefing document. In: U.S. Food and Drug Administration (ed) Rockville, MD

    Google Scholar 

  21. Keller TS, Mao Z, Spengler DM (1990) Young’s modulus, bending strength, and tissue physical properties of human compact bone. J Orthopaed Res Off Publ Orthopaed Res Soc 8(4):592–603. https://doi.org/10.1002/jor.1100080416

    Article  CAS  Google Scholar 

  22. Lee WR (1964) Appositional bone formation in canine bone: a quantitative microscopic study using tetracycline markers. J Anat 98:665–677

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies HMS (1995) The adaptive response of the equine metacarpus to locomotory stress. PhD Thesis, University of Melbourne

    Google Scholar 

  24. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58(2):109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  25. Martelli S (2017) Femoral neck strain during maximal contraction of isolated hip-spanning muscle groups. Comput Math Method Med 2017:2873789. https://doi.org/10.1155/2017/2873789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Fernandez, J. (2020). A Mechanostatistical Approach to Multiscale Computational Bone Remodelling. In: Belinha, J., Manzanares-Céspedes, MC., Completo, A. (eds) The Computational Mechanics of Bone Tissue. Lecture Notes in Computational Vision and Biomechanics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-37541-6_6

Download citation

Publish with us

Policies and ethics