Abstract
Polylepis species form the dominant high-altitude forests in the tropical Andes, one of the most vulnerable regions to future climate change scenarios. The study of the growth of these forests provides useful information about their ontogeny and the environmental conditions where they develop. The identification of growth patterns is relevant for understanding the dynamics of the forests in response to climatic variables. In this chapter, we present a brief review of dendroecological studies on Polylepis species. We also developed for the first time in the central Andes of Peru three new Polylepis ring-width chronologies together with a diameter growth modeling for the following species: Polylepis rodolfo-vasquezii, Polylepis rugulosa, and Polylepis tarapacana. Dendrochronological techniques together with a biologically based model help us to obtain information on forestry traits of Polylepis species. P. rodolfo-vasquezii to growth response to summer temperature of the current growth period determined radial growth, whereas spring and summer precipitation from the previous growth period determined the radial growth in P. rugulosa and P. tarapacana, respectively. The radial growth models indicated differences in the growth of the three Polylepis species with P. rodolfo-vasquezii reaching the highest rate (0.11 cm/yr), while P. tarapacana showed the lowest (0.08 cm/yr). Due to the low growth rates of these Polylepis species, long periods (>100 years) are required to establish and provide ecosystem services. As these forests face the challenge of climate change and anthropogenic pressure, there is a clear need to obtain precise information in order to formulate guidelines for the conservation of these forests, and the application of dendroecology is indispensable in this context.
Keywords
- Relative growth rate
- von Bertalanffy
- Tropical Andes
- Polylepis
- Dendroecology
- Radial growth
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Alvites C, Battipaglia G, Santopuoli G et al (2019) Dendrochronological analysis and growth patterns of Polylepis reticulata (Rosaceae) in the Ecuadorian Andes. IAWA J 40(2):1–21. https://doi.org/10.1163/22941932-40190240
Andrade VHF (2015) Modelos de crecimiento para Hymenaea courbaril L. e Handroanthus serratifolius (Vahl) S.O.Grose em floresta de terra firme utilizando análise de anéis de crescimento. Disertation, Universidade Federal do Paraná
Argollo J, Solíz C, Villalba R (2004) Potencialidad dendrocronológica de Polylepis tarapacana en los Andes Centrales de Bolivia. Ecología en Bolivia 39(1):5–24
Blasing TJ, Solomon A, Duvick D (1984) Response functions revisited. Tree-Ring Bull 44:1–15
Boninsegna JA, Argollo J, Aravena JC et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228. https://doi.org/10.1016/j.palaeo.2009.07.020
Brienen RJW (2005) Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees, PROMAB Scientific Series:10. Riberalta, Beni
Camel PV, Quispe-Melgar HR, Ames-Martínez FN et al (2019) Forest structure of three endemic species of the genus Polylepis (Rosaceae) in central Peru. Ecología Austral 29:285–295. https://doi.org/10.5167/uzh-173473
Castilho NTF (2013) Manejo da regeneração natural e produção de madeira de pau mulato em floresta de várzea do estuário amazônico. Disertation, Universidade Federal do Amapá (UNIFAP)
Chartier MP, Giantomasi MA, Renison D et al (2016) Exposed roots as indicators of geomorphic processes: a case-study from Polylepis mountain woodlands of Central Argentina. Dendrochronologia 37:57–63. https://doi.org/10.1016/j.dendro.2015.11.003
Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):87–99. https://doi.org/10.1007/s00442-005-0100-x
Chepstow-Lusty A, Winfield M (2000) Inca agroforestry: lessons from the past. AMBIO J Hum Environ 29:322–328. https://doi.org/10.1579/0044-7447-29.6.322
Christie DA, Lara A, Barichivich J et al (2009) El Niño-Southern Oscillation signal in the world’s highest-elevation tree-ring chronologies from the Altiplano, Central Andes. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):309–319. https://doi.org/10.1016/j.palaeo.2007.11.013
Coblentz D, Keating PL (2008) Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador. J Biogeogr 35:2026–2038. https://doi.org/10.1111/j.1365-2699.2008.01956.x
Cook E, Krusic PJ (2005) Program ARSTAN: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Lamont-Doherty Earth Observatory, Columbia University, Palisades
Cook E, Briffa K, Shiyatov S et al (1990) Tree ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, pp 104–123
Costa MS, Ferreira KEB, Botosso PC et al (2015) Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36:23–32. https://doi.org/10.1016/j.dendro.2015.08.004
Del Valle JI, Lema A (1999) Crecimiento de cohortes de árboles coetáneos en rodales espacialmente dispersos: el caso de Campnosperma panamensis. Ecología 23:249–260
Detienne P, Oyono F, Durrieu de Madron L et al (1998) L’analyse de cernes: Applications aux études de croissance de quelques essences en peuplements naturels de forét dense africaine. CIRAD-Foret, France, p 36
Domic AI, Capriles JM (2009) Allometry and effects of extreme elevation on growth velocity of the Andean tree Polylepis tarapacana Philippi (Rosaceae). Plant Ecol 205:223–234. https://doi.org/10.1007/s11258-009-9612-5
Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416. https://doi.org/10.2307/2259105
Fehse J, Hofstede R, Aguirre N et al (2002) High altitude tropical secondary forests: a competitive carbon sink? For Ecol Manag 163(1):9–25. https://doi.org/10.1016/S0378-1127(01)00535-7
Feldpausch TR, Banin L, Phillips OL et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106. https://doi.org/10.5194/bg-8-1081-2011
Fjeldså J, Kessler M (2004) Conservación de la biodiversidad de los bosques de Polylepis de las tierras altas de Bolivia. Una contribución al manejo sustentable en los Andes. DIVA Technical Report 11. Editorial FAN, Santa Cruz de la Sierra
Fritts HC (1976) Tree rings and climate. Academic Press, New York
García-Plazaola JI, Rojas R, Christie DA et al (2015) Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AoB Plants 7:1–13. https://doi.org/10.1093/aobpla/plv058
Gareca EE, Fernández M, Stanton S (2010) Dendrochronological investigation of the high Andean tree species Polylepis besseri and implications for management and conservation. Biodivers Conserv 19:1839–1851. https://doi.org/10.1007/s10531-010-9807-z
Giraldo JA, Del Valle JI (2011) Estudio del crecimiento de Prioria copaifera (Caesalpinaceae) mediante técnicas dendrocronológicas. Rev Biol Trop 59:1813–1831
Grissino-Mayer H (2001) Evaluation crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221
Groenendijk P, Sass-Klaassen U, Bongers F et al (2014) Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For Ecol Manag 323:65–68. https://doi.org/10.1016/j.foreco.2014.03.037
Guarín JR, Del Valle JI (2014) Modeling the stipe growth of the Oenocarpus bataua palm in the Central Cordillera of the Andes, Colombia. For Ecol Manag 314:141–149. https://doi.org/10.1016/j.foreco.2013.12.005
Henry HAL, Aarssen LW (1999) The interpretation of stem diameter-height allometry in trees: biomechanical constraints, neighbor effects, or biased regressions? Ecol Lett 2(2):89–97. https://doi.org/10.1046/j.1461-0248.1999.22054.x
Hooghiemstra H, Van der Hammen T (2004) Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans R Soc Lond Ser B Biol Sci 359:173–181. https://doi.org/10.1098/rstb.2003.1420
Hunt R (1990) Basic growth analysis: plant growth analysis for beginners. Academic Division of Unwin Hyman Ltd, London
Inga JG, Del Valle JI (2017) Log-relative growth: a new dendrochronological approach to study diameter growth in Cedrela odorata and Juglans neotropica, Central Forest, Peru. Dendrochronologia 44:117–129. https://doi.org/10.1016/j.dendro.2017.03.009
Jomelli V, Pavlova I, Guin O et al (2012) Analysis of the dendroclimatic potential of Polylepis pepei, P. subsericans and P. rugulosa in the tropical Andes (Peru-Bolivia). Tree-Ring Res 68(2):91–104. https://doi.org/10.3959/2011-10.1
Kearsley E, de Haulleville T, Hufkens K et al (2013) Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat Commun 4. https://doi.org/10.1038/ncomms3269
Kessler M (2002) The “Polylepis problem”: where do we stand? Ecotropica 8:97–110
Kessler M (2006) Bosques de Polylepis. Botánica económica los Andes Centrales 11:110–120
Kessler M, Driesch P (1993) Causas e historia de la destrucción de bosques altoandinos en Bolivia. Ecol Boliv 21:1–18
Kessler M, Bohner J, Klugea J (2007) Modelling tree height to assess climatic conditions at tree lines in the Bolivian Andes. Ecol Model 207:223–233. https://doi.org/10.1016/j.ecolmodel.2007.05.001
Kessler M, Toivonen JM, Sylvester SP et al (2014) Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00194
Lanza MG, Chartier MP, Marcora PI (2018) Relación clima-crecimiento radial de Polylepis australis en un gradiente altitudinal en las Sierras Grandes de Córdoba, Argentina. Ecol Austral 28:278–290. https://doi.org/10.25260/EA.18.28.1.1.620
Layme-Huaman ET, Ferrero ME, Palacios-Lazaro KS et al (2018) Cedrela nebulosa: a novel species for dendroclimatological studies in the Montane tropics of South America. Dendrochronologia 50:105–112. https://doi.org/10.1016/j.dendro.2018.06.004
López L (2011) Una aproximación dendrocronológica a la ecología y el manejo de los bosques tropicales secos del cerrado boliviano. Universidad Nacional del Comahue
López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manag 292:49–55. https://doi.org/10.1016/j.foreco.2012.12.011
Marcora P, Hensen I, Renison D et al (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib 14(4):630–636. https://doi.org/10.1111/j.1472-4642.2007.00455.x
Mattos PP (1999) Identificação de aneis anuais de crescimento e estimativa de idade e incremento anual em diametro de especies nativas do pantanal da Nhecolandia, MS. Disertation, Universidade Federal do Paraná
Morales MS, Villalba R, Grau HR et al (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85(11):3080–3089. https://doi.org/10.1890/04-0139
Morales MS, Carilla J, Grau HR et al (2015) Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction. Clim Past 11(9):1139–1152. https://doi.org/10.5194/cp-11-1139-2015
Moya J, Lara A (2011) Cronologías de ancho de anillos de queñoa (Polylepis tarapacana) para los últimos 500 años en el Altiplano de la región de Arica y Parinacota, Chile. Bosque 32(2):165–173. https://doi.org/10.4067/S0717-92002011000200007
Mushove PT, Prior JAB, Gumbie C et al (1995) The effects of different environments on diameter growth increments of Colophospermum mopane and Combretum apiculatum. For Ecol Manag 72:287–292. https://doi.org/10.1016/0378-1127(94)03468-C
Olson DM, Dinerstein E, Wikramanayake ED (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Pommerening A, Muszta A (2016) Relative plant growth revisited: towards a mathematical standardisation of separate approaches. Ecol Model 320:383–392. https://doi.org/10.1016/j.ecolmodel.2015.10.015
Pretzsch H (2010) Forest dynamics, growth, and yield. In: Forest dynamics, growth and yield. Springer Berlin Heidelberg, Germany, p 1–39
Rada F, Azócar A, Briceño B et al (1996) Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10(4):218–222. https://doi.org/10.1007/BF02185672
Roig F, Fernández M, Gareca E et al (2001) Estudios dendrocronológicos en los ambientes húmedos de la puna boliviana. Rev Bol Ecol 9(1):3–13
Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16. https://doi.org/10.1007/s00468-010-0480-3
Rozendaal DMA, Brienen RJW, Soliz-Gamboa CC et al (2010) Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time. New Phytol 185:759–769. https://doi.org/10.1111/j.1469-8137.2009.03109.x
Schöngart J (2008) Growth-Oriented Logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplains. For Ecol Manag 256:46–58. https://doi.org/10.1016/j.foreco.2008.03.037
Schöngart J, Felfili Fortes C, Nunes da Cunha C et al (2008) Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosci Discuss 5(3):2103–2130
Schulman E (1956) Dendroclimatic change in semiarid America. University of Arizona Press, Tucson, p 142
Segovia-Salcedo MC, Domic A, Boza TE et al (2018) Situación taxonómica de las especies del género Polylepis. Implicancias para los estudios ecológicos, la conservación y la restauración de sus bosques. Ecol Austral 28:188–201. https://doi.org/10.25260/EA.18.28.1.1.527
Simpson BB (1979) A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithson Contrib Bot 43:1–62. https://doi.org/10.5479/si.0081024X.43.1
Solíz C, Villalba R, Argollo J et al (2009) Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):296–308. https://doi.org/10.1016/j.palaeo.2008.07.025
Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, p 73
Suarez ML, Renison D, Marcora P et al (2008) Age–size–habitat relationships for Polylepis australis: dealing with endangered forest ecosystems. Biodivers Conserv 17(11):2617–2625. https://doi.org/10.1007/s10531-008-9336-1
Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol 33(1):106–118. https://doi.org/10.1093/treephys/tps127
Sylvester SP, Heitkamp F, Sylvester MDPV et al (2017) Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-03500-7
Szejner P (2011) Tropical dendrochronology: exploring tree-ring of Pinus oocarpa in eastern Guatemala. Georg-August-Universität Göttingen
Toivonen JM, Gonzales-Inca CA, Bader MY et al (2018) Elevational shifts in the topographic position of Polylepis forest stands in the Andes of Southern Peru. Forests 9:1–10. https://doi.org/10.3390/f9010007
Valencia BG, Matthews-Bird F, Urrego DH et al (2016) Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytol 212:510–522. https://doi.org/10.1111/nph.14042
Valencia BG, Bush MB, Coe AL et al (2018) Polylepis woodland dynamics during the last 20,000 years. J Biogeogr 45:1019–1030. https://doi.org/10.1111/jbi.13209
Valenzuela LV, Villalba MI (2015) A new species of Polylepis (Rosaceae) from Peru. Arnaldoa 22(2):329–338
Vanclay JK (1995) Growth models for tropical forests: a synthesis of models and methods. For Sci 41(1):4–42. https://doi.org/10.1093/forestscience/41.1.7
Vásquez E, Ladd B, Borchard N (2014) Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes. Alp Bot 124(1):71–75. https://doi.org/10.1007/s00035-014-0126-y
von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32(3):217–231
West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631
Wigley TM, Briffa L, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
Wood SW, Hua Q, Allen K et al (2010) Age and growth of a fire prone Tasmanian temperate old-growth forest stand dominated by Eucalyptus regnans, the world’s tallest angiosperm. For Ecol Manag 260:438–447. https://doi.org/10.1016/j.foreco.2010.04.037
Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo forest reserve in Venezuela. J Ecol 87:391–403. https://doi.org/10.1046/j.1365-2745.1999.00361.x
Worbes M (2004) Mensuration Tree ring analysis. In: Encypledia of forest sciences. Elsevier, Amsterdam, Holanda
Worbes M, Staschel R, Roloff A et al (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manag 173:105–123. https://doi.org/10.1016/S0378-1127(01)00814-3
Zuidema PA, Boot RGA (2002) Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. J Trop Ecol 18:1–31. https://doi.org/10.1017/S0266467402002018
Acknowledgments
The authors are grateful for the collaboration of Luis Salome, Diana Rivera, Christian Marmanillo, and Andre Llanos in the field work. We are grateful to 147-2015 FONDECYT, ANPCyT (PICT 2013-1880), CONICET, PIP 11220130100584, partially funded by the BNP Paribas Foundation in the frame of its “Climate Initiative” program, NSF_P2C2, and PIRE NSF. We also are grateful to the editors and anonymous reviewers for their useful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Requena-Rojas, E.J. et al. (2020). Temporal Growth Variation in High-Elevation Forests: Case Study of Polylepis Forests in Central Andes. In: Pompa-García, M., Camarero, J. (eds) Latin American Dendroecology. Springer, Cham. https://doi.org/10.1007/978-3-030-36930-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-36930-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36929-3
Online ISBN: 978-3-030-36930-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)