Skip to main content
Log in

Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes

  • Short Communication
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Polylepis woodland occurs in Peru’s tropical highlands at elevations between 3,500 and 5,000 m above sea level and Polylepis is the most common tree at timberline in South America. The objective of this study was to assess the total ecosystem carbon stock in a Polylepis incana woodland, i.e., aboveground biomass (canopy trees and understory), root biomass and soil carbon stocks were all quantified. As part of this study, an allometric equation for the quantification of the aboveground biomass of individual P. incana trees was developed for the first time. The most important carbon pool was the soil (39.7 ± 6.9 kg m−2) followed by the aboveground biomass of Polylepis trees (3.8 ± 0.7 kg m−2). The total ecosystem carbon stock was estimated to be 43.9 ± 7.6 kg m−2; thus, 90.6 % of the ecosystem carbon stock is soil carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Araújo TSM, Higuchi N, Andrade de Carvalho Júnior J (1999) Comparison of formula for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. For Ecol Manag 117:43–52

    Article  Google Scholar 

  • Aucca C, Ramsay PM (2005) Management of biodiversity and land use in southern Peru: Ecoan’s activities to help conserve Polylepis woodlands. Mt Res Dev 25:287–289

    Article  Google Scholar 

  • Aucca C, Palomino CW, Samochuallpa SE, Ferro MG (2008) Especiación y endemismo en aves de los bosques de Polylepis, Perú. In: Ponencia Presentada en el VIII Neotropical Ornithological Congress, Venezuale

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (2008) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Heidelberg

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. In: FAO (ed) Forestry paper. Rome

  • Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J et al (2006) Human impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurwich DE et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Google Scholar 

  • Fehse J, Hofstede R, Aguirre N, Paladines C, Kooijman A, Sevink J (2002) High altitude tropical secondary forests: a competitive carbon sink? For Ecol Manag 163:9–25

    Article  Google Scholar 

  • Fjeldsa J (2002) Polylepis forests—vestiges of a vanishing ecosystem in the Andes. Ecotropica 8:111–123

    Google Scholar 

  • Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis forests of the highlands of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes, Copenhagen

  • Gayoso J, Schlegel B (2001) Una tarea pendiente: Proyectos forestales para mitigación de gases de efecto invernadero. Ambiente y Desarrollo 17:41–49

    Google Scholar 

  • Gibbon A, Silman MR, Malhi Y, Fisher JB, Meir P, Zimmermann M et al (2010) Ecosystem carbon storage across the grassland-forest transition in the high Andes of Manu National Park, Peru. Ecosystems 13:1097–1111

    Article  CAS  Google Scholar 

  • Giese LAB, Aust WM, Kolka RK, Trettin CC (2003) Biomass and carbon pools of disturbed riparian forests. For Ecol Manag 180:493–508

    Google Scholar 

  • Gloor M, Gatti L, Brienen R, Feldpausch TR, Phillips OL, Miller J et al (2012) The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences 9:5407–5430. doi:10.5194/bg-9-5407-2012

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951. doi:10.1111/j.1365-2435.2005.01040.x

    Article  Google Scholar 

  • Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustain 4:597–603

    Article  Google Scholar 

  • IPCC (2000) Land use, land-use change and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Cambridge University Press, Cambridge, p 375

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Kessler M (2002) The “Polylepis problem”: where do we stand? Ecotropica 8:97–110

    Google Scholar 

  • Kessler M (2006) Bosques de Polylepis. In: Moraes MR, Øllgaard B, Peter KL, Borchsenius F, Balslev H (eds) Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, LA Paz

  • Ladd B, Bonser SP, Peri PL, Larsen JR, Laffan SW, Pepper DA, Cendón DI (2009) Towards a physical description of habitat: quantifying environmental adversity (abiotic stress) in temperate forest and woodland ecosystems. J Ecol 97:964–971

    Article  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Midgley GF, Bond WJ, Kapos V, Ravilious C, Scharlemann JPW, Woodward FI (2010) Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr Opin Environ Sustain 2:264–270

    Article  Google Scholar 

  • MINAM (2012) (Ministerio del Ambiente del Perú) Memoria descriptiva: mapa de coberatura vegetal del PeruEditoral Super Grafica EIRL, Lima, Peru

  • Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C (2008) Chapter 15 altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosand R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Heidelberg

    Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, Garcia Aquino de Souza S, Teixeira Batista G, Bovino Couto L (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag 117:149–167

    Article  Google Scholar 

  • Nepstad D, Schwartzman S, Bamberger B, Santilli M, Ray D, Schlesinger P et al (2006) Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv Biol 20:65–73

    Article  CAS  PubMed  Google Scholar 

  • Scharlemann JP, Kapos V, Campbell A, Lysenko I, Burgess ND, Hansen MC, Gibbs HK, Dickson B, Miles L (2010) Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44:352–357

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde, 14th edn. Spektrum Akademischer Verlag, Heidelberg, Berlin

  • Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change, 3rd edn. Academic Press Inc, Waltham

    Google Scholar 

  • Servat PG, Mendoza W, Ochoa JA (2002) Flora y Fauna de cuatro bosques de Polylepis (Rosaceae) en la Cordillera del Vilcanota (Cusco, Perú). Ecología Aplicada 1:25–35

    Google Scholar 

  • Williams RJ, Zerihun A, Montagu KD, Hoffman M, Hutley LB, Chen X (2005) Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. Aust J Bot 53:607–619

    Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. SILVA FENNICA monographs 4. The Finnish Society of Forest Science, The Finnish Forest Research Institute, Helsinki

  • Zutta B, Rundel P, Saatchi S, Casana J, Gauthier P, Soto A et al (2012) Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes. Rev Peru Biol 19:205–212

    Google Scholar 

Download references

Acknowledgments

We thank J. Takahashi and the University Científica del Sur for financial support of the study. We also thank the Servicio Nacional de Áreas Naturales Protegidas (SERNANP) for permission to destructively harvest Polylepis trees, and especially we thank the SERNANP staff (Che et al.) that work in Yauyos Cochas National Park for their help during the field campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenton Ladd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásquez, E., Ladd, B. & Borchard, N. Carbon storage in a high-altitude Polylepis woodland in the Peruvian Andes. Alp Botany 124, 71–75 (2014). https://doi.org/10.1007/s00035-014-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-014-0126-y

Keywords

Navigation