Skip to main content

TH Treatment in Patients with Cardiac Disorders: General Aspects and Rationale

  • Chapter
  • First Online:
Thyroid and Heart
  • 431 Accesses

Abstract

Thyroid hormones (TH) are the principal modulators of cardiovascular homeostasis in both physiological and pathological conditions, mainly regulating heart rate, cardiac contractility, and vascular resistance, by genomic and non-genomic activities. In the present chapter, are discussed the most important events characterizing the TH regulation of the cardiac muscle at molecular and cellular levels. In particular, are considered the TH reduction observed in some pathological conditions and the switch from beneficial to progressively harmful effects. Moreover, is evaluated the importance of epigenetic modifications related to TH signaling in a cardiac context. Based on these observations, the possible cardiac role of TH and its potential clinical and therapeutical relevance will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, et al. Thyroid hormones and cardiovascular function and diseases. JACC. 2018;71:1781–96. https://doi.org/10.1016/j.jacc.2018.02.045.

    Article  PubMed  CAS  Google Scholar 

  2. Sabatino L, Iervasi G, Pingitore A. Thyroid hormone and heart failure: from myocardial protection to systemic regulation. Expert Rev Cardiovasc Ther. 2014;12:1227–36. https://doi.org/10.1586/14779072.2014.957674.

    Article  PubMed  CAS  Google Scholar 

  3. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV. Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem. 2007;297:65–72. https://doi.org/10.1007/s11010-006-9323-3.

    Article  PubMed  CAS  Google Scholar 

  4. Pantos C, Mourouzis I, Cokkinos DV. Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vascul Pharmacol. 2010;52(3–4):157–65. https://doi.org/10.1016/j.vph.2009.11.006.

    Article  PubMed  CAS  Google Scholar 

  5. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938. https://doi.org/10.1210/er.2008-0019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 2008;22:1357–69. https://doi.org/10.1210/me.2007-0112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Everts ME, Verhoeven FA, Bezstarosti K, Moerings EP, Hennemann G, Visser TJ, et al. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology. 1996;137:4235–42. https://doi.org/10.1210/en.137.10.4235.

    Article  PubMed  CAS  Google Scholar 

  8. Sabatino L, Iervasi G, Ferrazzi P, Francesconi D, Chopra IJ. A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci. 2000;68:191–202. https://doi.org/10.1016/S0024-3205(00)00929-2.

    Article  PubMed  CAS  Google Scholar 

  9. Sabatino L, Chopra IJ, tanavoli S, Iacconi P, Iervasi G. A radioimmunoassay for type I iodothyronine 5′-monodeiodinase in human tissues. Thyroid. 2001;11:733–9. https://doi.org/10.1089/10507250152484565.

    Article  PubMed  CAS  Google Scholar 

  10. Wassen FW, Schiel AE, Kuiper GG, Kaptein E, Bakker O, Visser TJ, Simonides WS. Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology. 2002;143:2812–5. https://doi.org/10.1210/endo.143.7.8985.

    Article  PubMed  CAS  Google Scholar 

  11. Simonides WS, Mulcahey MA, Redout EM, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118:975–83. https://doi.org/10.1172/JCI32824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lazar MA. Thyroid hormone action: a binding contract. J Clin Invest. 2003;112:497–9. https://doi.org/10.1172/JCI200319479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Davis PJ, Shih A, Lin H-Y, Martino LJ, Davis FB. Thyroxine promotes Association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem. 2000;275:38032–9. https://doi.org/10.1074/jbc.M002560200.

    Article  PubMed  CAS  Google Scholar 

  14. Balzan S, Del Carratore R, Nardulli C, Sabatino L, Lubrano V, Iervasi G. The stimulative effect of T3 and T4 on human myocardial endothelial cell proliferation, migration and angiogenesis. J Clin Exp Cardiolog. 2013;4:12. https://doi.org/10.4172/2155-9880.1000280.

    Article  CAS  Google Scholar 

  15. Sabatino L, Kusmic C, Nicolini G, Amato R, Casini G, Iervasi G, et al. T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle. J Mol Endocrinol. 2016;57:139–49. https://doi.org/10.1530/JME-16-0118.

    Article  PubMed  CAS  Google Scholar 

  16. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, et al. Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res. 2010;42:718–24. https://doi.org/10.1055/s-0030-1255035.

    Article  PubMed  CAS  Google Scholar 

  17. Kinugawa K, Yonekura K, Ribeiro RC, Eto Y, Aoyagi T, Baxter JD, et al. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res. 2001;89:591–8.

    Article  CAS  Google Scholar 

  18. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344:501–9. https://doi.org/10.1056/nejm200102153440707.

    Article  PubMed  CAS  Google Scholar 

  19. Marin-Garcia J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol. 2010;52:120–30. https://doi.org/10.1016/j.vph.2009.10.008.

    Article  PubMed  CAS  Google Scholar 

  20. Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid. 1996;6(5):505–12. https://doi.org/10.1089/thy.1996.6.505.

    Article  PubMed  CAS  Google Scholar 

  21. Mizuma H, Murakami M, Mori M. Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase. Circ Res. 2001;88:313–8.

    Article  CAS  Google Scholar 

  22. Sabatino L, Lubrano V, Balzan S, Kusmic C, Del Turco S, Iervasi G. Thyroid hormone deiodinases D1, D2, and D3 are expressed in human endothelial dermal microvascular line: effects of thyroid hormones. Mol Cell Biochem. 2015;399:87–94. https://doi.org/10.1007/s11010-014-2235-8.

    Article  PubMed  CAS  Google Scholar 

  23. Carrillo-Sapulveda MA, Ceravolo GS, Fortes Z, Carvalho MH, Tostes RC, Laurindo FR, et al. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res. 2010;3:560–70. https://doi.org/10.1093/cvr/cvp304.

    Article  Google Scholar 

  24. Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L. Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2006;91:5076–82. https://doi.org/10.1210/jc.2006-1075.

    Article  PubMed  CAS  Google Scholar 

  25. Taddei S, Caraccio N, Virdis A, Dardano A, Versari D, Ghiadoni L. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88:3731–7. https://doi.org/10.1210/jc.2003-030039.

    Article  PubMed  CAS  Google Scholar 

  26. Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep. 2015;12:141–9. https://doi.org/10.1007/s11897-014-0246-0.

    Article  PubMed  CAS  Google Scholar 

  27. de Castro AL, Fernandes RO, Ortiz VD, Campos C, Bonetto JH, Fernandes TR, et al. Thyroid hormones improve cardiac function and decrease expression of pro-apoptotic proteins in the heart of rats 14 days after infarction. Apoptosis. 2016;21:184–94. https://doi.org/10.1007/s10495-015-1204-3.

    Article  PubMed  CAS  Google Scholar 

  28. Kahaly GJ, Dillman WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28. https://doi.org/10.1210/er.2003-0033.

    Article  PubMed  CAS  Google Scholar 

  29. Pantos C, Xinaris C, Mourouzis I. Thyroid hormone receptor α1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol. 2008;59:253–69. https://doi.org/10.21037/atm.2018.06.12.

    Article  PubMed  CAS  Google Scholar 

  30. Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem. 2006;281:20666–72. https://doi.org/10.1074/jbc.M512671200.

    Article  PubMed  CAS  Google Scholar 

  31. Gerdes AM, Iervasi G. Thyroid replacement therapy and heart failure. Circulation. 2010;122:385–93. https://doi.org/10.1161/circulationaha.109.917922.

    Article  PubMed  Google Scholar 

  32. Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol. 2006;290:H1313–25. https://doi.org/10.1152/ajpheart.00816.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mayer SC, Gilsbach R, Preissl S, Monroy Ordonez EB, Schnick T, Beetz N, et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res. 2015;117:622–33. https://doi.org/10.1161/CIRCRESAHA.115.306721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gil-Cayuela C, Roselló-LLetía E, Tarazóna E, Ortega A, Sandoval J, Martínez-Dolzh L. Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: an epigenomic study. Int J Cardiol. 2017;243:27–33. https://doi.org/10.1016/j.ijcard.2017.05.042.

    Article  PubMed  Google Scholar 

  35. Janssen R, Muller A, Simonides WS. Cardiac thyroid hormone metabolism and heart failure. Eur Thyroid J. 2017;6:130–7. https://doi.org/10.1159/000469708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Haddad F, Jiang W, Bodell PW, Qin AX, Baldwindoi KM. Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications. Am J Physiol Heart Circ Physiol. 2010;299:H1968–80. https://doi.org/10.1152/ajpheart.00644.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92. https://doi.org/10.1016/j.cell.2007.01.029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nagao H, Imazu T, Hayashi H, Takahashi K, Minato K. Influence of thyroidectomy on thyroxine metabolism and turnover rate in rats. J Endocrinol. 2011;210:117–23. https://doi.org/10.1210/endo-80-5-915.

    Article  PubMed  CAS  Google Scholar 

  39. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42. https://doi.org/10.1038/nrg2485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation review and transcription: a dynamic perspective. Mol Cell. 2006;23:289–96. https://doi.org/10.1016/j.molcel.2006.06.017.

    Article  PubMed  CAS  Google Scholar 

  41. Catalucci D, Latronico MV, Condorelli G. MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Ann N Y Acad Sci. 2008;1123:20–9. https://doi.org/10.1196/annals.1420.004.

    Article  PubMed  CAS  Google Scholar 

  42. Janssen R, Zuidwijk MJ, Muller A, van Mil A, Dirkx E, Oudejans CBM, et al. MicroRNA 214 is a potential regulator of thyroid hormone levels in the mouse heart following myocardial infarction, by targeting the thyroid-hormone-inactivating enzyme deiodinase type III. Front Endocrinol. 2016;7:22. https://doi.org/10.3389/fendo.2016.00022.

    Article  Google Scholar 

  43. Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech. 2000;50:522–31. https://doi.org/10.1161/CIRCULATIONAHA.111.030932.

    Article  PubMed  CAS  Google Scholar 

  44. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119:2772–86. https://doi.org/10.1172/JCI36154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sabatino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabatino, L. (2020). TH Treatment in Patients with Cardiac Disorders: General Aspects and Rationale. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics