Skip to main content

A Network Structure Analysis of Economic Crises

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

Do countries with similar macroeconomic dynamics during pre-crisis times experience a common subsequent crisis-, respectively non-crisis-, status? Based on the Euclidean distance, a community structure detection algorithm generates the network topology of four distinct pre-crisis periods between 1990 and 2008 comprising 27 countries. The desired outcome is a clear-cut separation of future crisis from non-crisis economies. The approach succeeds in uncovering prominent cluster formations, whereas period-specific heatmaps reveal the time-varying importance of the considered indicators. The heterogeneous cluster-formation does not allow to infer any dynamics, which would unambiguously hint at an upcoming crisis event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 2.3 for an explanation of the modularity algorithm and the measure \(Q^G\).

  2. 2.

    The size of the threshold for the largest distances equals the one for the shortest distances.

  3. 3.

    See Table 1 for the country- and period-specific flagging.

  4. 4.

    We tried to stick to \(q \in \left[ -4;4\right] \), i.e. keep the intervals of crisis-occurrences rather tight in order to not veil the existence of time-specific dynamics. However, this interval can be changed arbitrarily.

  5. 5.

    EX = Exports; Reserves = International Reserves; R_ExchRate_DevTrend = Real Exchange Rate Overvaluation relative to Trend; N_STDebt/Reserves = Nominal Short-Term Debt to International Reserves; CA/GDP = Current Account Deficit relative to GDP.

  6. 6.

    The raw-data reveals indeed a Current Account Deficit.

  7. 7.

    Cross-checking the raw-data reveals indeed a Current Account Deficit.

  8. 8.

    See Fig. 1d Clusters 3 and 4.

  9. 9.

    See Fig. 1d Clusters 0 and 1.

References

  1. Araújo, T., Göbel, M.: Reframing the S&P 500 network of stocks along the 21st century. Phys. A: Stat. Mech. Appl. 526, 121062 (2019). https://doi.org/10.1016/j.physa.2019.121062

    Article  Google Scholar 

  2. Berg, A., Pattillo, C.: Predicting currency crises: the indicators approach and an alternative. J. Int. Money Financ. 18, 561–586 (1999)

    Article  Google Scholar 

  3. Berg, A., Pattillo, C.: What caused the asian crises: an early warning system approach. Economic Notes by Banca Monte dei Paschi di Siena SpA 28(3), 285–334 (1999b)

    Google Scholar 

  4. Blondel, V.D., Guillaume, J.-L., Lamboitte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 10, 1–12 (2008)

    MATH  Google Scholar 

  5. Eichengreen, B., Rose, A.K., Wyplosz, C.: Exchange market mayhem: the antecedents and aftermath of speculative attacks. University of California, Berkeley (1995). http://faculty.haas.berkeley.edu/arose/erw3ep.pdf. Accessed 16 July 2019

    Article  Google Scholar 

  6. Fioramanti, M.: Predicting sovereign debt crises using artificial neural networks: a comparative approach. J. Financ. Stab. 4, 149–164 (2008)

    Article  Google Scholar 

  7. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)

    Article  Google Scholar 

  8. Fuertes, A.-M., Kalotychou, E.: Optimal design of early warning systems for sovereign debt crises. Int. J. Forecast 23, 85–100 (2007)

    Article  Google Scholar 

  9. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability, p. 71. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  10. International Monetary Fund: World Economic Outlook: Challenges to Steady Growth, Washington DC, pp. 71–100 (2018)

    Google Scholar 

  11. Isogai, T.: Clustering of Japanese stock returns: statistical analysis of the correlation structure of fat-tailed returns. Dissertation, Japan Advanced Institute of Science and Technology (2015)

    Google Scholar 

  12. Kaminsky, G.L., Reinhart, C.M.: The twin crises: the causes of banking and balance-of-payments problems. International Finance Discuss Paper 544 (1996)

    Google Scholar 

  13. Kaminsky, G.L., Lizondo, S., Reinhart, C.M.: Leading indicators of currency crises. IMF Staff Pap. 45(1), 1–48 (1998)

    Article  Google Scholar 

  14. Kaminsky, G.L., Mati, A., Choueiri, N.: Thirty years of currency crises in Argentina: external shocks or domestic fragility? NBER Working Paper 15478 (2009)

    Google Scholar 

  15. Krugman, P.: A model of balance of payments crises. J. Money Credit Bank 11, 311–325 (1979)

    Article  Google Scholar 

  16. Krugman, P.: Balance sheets, the transfer problem, and financial crises. Int. Tax. Public Financ. 6, 459–472 (1999)

    Article  Google Scholar 

  17. Laeven, L., Valencia, F.: Systemic banking crises revisited. IMF Working Paper WP/18/206 (2018)

    Google Scholar 

  18. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  19. Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys J. B. 11, 193–197 (1999)

    Article  Google Scholar 

  20. Marghescu, D.R., Sarlin, P., Liu, S.: Early-warning analysis for currency crises in emerging markets: a revisit with fuzzy clustering. Intell. Syst. Acc. Financ. Manag. 17, 143–165 (2010)

    Article  Google Scholar 

  21. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  22. Nunn, N., Quian, N., Wen, J.: Distrust and political turnover. NBER Working Paper Series 24187 (2018)

    Google Scholar 

  23. Obstfeld, M.: The logic of currency crises. NBER Working Paper Series 4640 (1994)

    Google Scholar 

  24. Obstfeld, M.: Models of currency crises with self-fulfilling features. Eur. Econ. Rev. 40, 1037–1047 (1996)

    Article  Google Scholar 

  25. Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98, 1259–1319 (1993)

    Article  Google Scholar 

  26. Piccardi, C., Calatroni, L., Bertoni, F.: Clustering financial time series by network community analysis. Int. J. Mod. Phys. C 22(1), 35–50 (2011)

    Article  Google Scholar 

  27. Reinhart, C.M., Rogoff, K.S.: Is the 2007 U.S. sub-prime financial crisis so different? An international historical comparison. NBER Working Paper 14587 (2008)

    Google Scholar 

  28. Reinhart, C.M., Rogoff, K.S.: This Time is Different: Eight Centuries of Financial Folly. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  29. Ristolainen, K.: Predicting banking crises with artificial neural networks: the role of nonlinearity and heterogeneity. Scand. J. Econ. 120(1), 31–62 (2018)

    Article  Google Scholar 

  30. Sarlin, P.: On biologically inspired predictions of the global financial crisis. Neural Comput. Appl. 24, 663–673 (2014)

    Article  Google Scholar 

  31. Sarlin, P., Marghescu, D.R.: Visual predictions of currency crises using self-organizing maps. Intell. Syst. Acc. Financ. Manag. 18(1), 15–38 (2011)

    Article  Google Scholar 

  32. Spelta, A., Araújo, T.: The topology of cross-border exposures: beyond the minimal spanning tree approach. Phys. A: Stat. Mech. Appl. 391(22), 5572–5583 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Göbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Göbel, M., Araújo, T. (2020). A Network Structure Analysis of Economic Crises. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_44

Download citation

Publish with us

Policies and ethics