Skip to main content

A Review of Research on the Treatment of Metallic Pollution by Using a Green Construction Material

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Abstract

Nowadays, the discharge of a large number of pollutants from industrial and natural sources contaminated by heavy metals is a great challenge due to its threat to health and environment. Immobilization is one of the most widely used methods for treating this problem. Geopolymers are aluminosilicate inorganic polymers used as good binders in immobilization of heavy metals due to high efficiency, good surface properties, and amorphous structure. This review summarizes the research work carried out on the immobilization of heavy metals, with geopolymers binders. The performance of geopolymers in immobilization of heavy metals depends on several parameters mainly source materials, nature of metals, Syntheses method of geopolymer and medium of leaching. Future researches should focus on the utilisation of other industrial waste as geopolymers binder in the immobilization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fergusson, J.E.: The heavy elements : chemistry, environmental impact, and health effects, 1st edn. Pergamon Press, Oxford (1990)

    Google Scholar 

  2. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J.: Heavy Metals Toxicity and the Environment. EXS 101, 133–164 (2012)

    Google Scholar 

  3. Hills, C.D., Sollars, C.J., Perry, R.: Ordinary portland cement based solidification of toxic wastes: The role of OPC reviewed. Cem. Concr. Res. 23(1), 196–212 (1993)

    Article  Google Scholar 

  4. Davidovits, J.: Global Warming Impact on the Cement and Aggregates Industries, p. 23 (1994)

    Google Scholar 

  5. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Article  Google Scholar 

  6. van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139(3), 506–513 (2007)

    Article  Google Scholar 

  7. Davidovits, J., Buzzi, L., Rocher, P., Gimeno, D., Marini, C., Tocco, S.: Geopolymeric cement based on low cost geologic material, results from the European Research project GEOCISTEM, pp. 83–96 (1999)

    Google Scholar 

  8. Davidovits, J.: Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)

    Article  Google Scholar 

  9. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation, 25 August 2010. https://pubs.acs.org/doi/abs/10.1021/cm101151n. Accessed 09 Apr 2019

  10. Bakkali, H., Ammari, M., Frar, I.: NaOH alkali-activated class F fly ash: NaOH molarity, curing conditions and mass ratio effect. J. Mater. Environ. Sci. 7(2), 397–401 (2016)

    Google Scholar 

  11. Xia, M., et al.: Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 209, 1206–1215 (2019)

    Article  Google Scholar 

  12. El-Eswed, B.I., Aldagag, O.M., Khalili, F.I.: Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 140, 148–156 (2017)

    Article  Google Scholar 

  13. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598 (2008)

    Article  Google Scholar 

  14. Alonso, M.M., et al.: Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Constr. Build. Mater. 159, 745–754 (2018)

    Article  Google Scholar 

  15. Zheng, L., Wang, W., Qiao, W., Shi, Y., Liu, X.: Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization. Front. Environ. Sci. Eng. 9(4), 642–648 (2015)

    Article  Google Scholar 

  16. Conner, J.R., Hoeffner, S.L.: A critical review of stabilization/solidification technology. Crit. Rev. Environ. Sci. Technol. 28(4), 397–462 (1998)

    Article  Google Scholar 

  17. Burakov, A.E., et al.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Article  Google Scholar 

  18. Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H., Yang, S.F.: The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 56, 90–96 (2012)

    Article  Google Scholar 

  19. Rasaki, S.A., Bingxue, Z., Guarecuco, R., Thomas, T., Minghui, Y.: Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J. Clean. Prod. 213, 42–58 (2019)

    Article  Google Scholar 

  20. Siyal, A.A., et al.: A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manage. 224, 327–339 (2018)

    Article  Google Scholar 

  21. Palomo, A., Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead. Cem. Concr. Res. 33(2), 289–295 (2003)

    Article  Google Scholar 

  22. van Jaarsveld, J.G.S., van Deventer, J.S.J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29(8), 1189–1200 (1999)

    Article  Google Scholar 

  23. Qian, G., Sun, D.D., Tay, J.H.: Immobilization of mercury and zinc in an alkali-activated slag matrix. J. Hazard. Mater. 101(1), 65–77 (2003)

    Article  Google Scholar 

  24. Huang, X., Zhuang, R., Muhammad, F., Yu, L., Shiau, Y., Li, D.: Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168, 300–308 (2017)

    Article  Google Scholar 

  25. Wang, Y., Han, F., Mu, J.: Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr. Build. Mater. 160, 818–827 (2018)

    Article  Google Scholar 

  26. Muhammad, F., et al.: Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6 +, Pb2+ and Cd2+ in composite based geopolymer. J. Clean. Prod. 188, 807–815 (2018)

    Article  Google Scholar 

  27. Boca Santa, R.A.A., Soares, C., Riella, H.G.: Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J. Hazard. Mater. 318, 145–153 (2016)

    Article  Google Scholar 

  28. Huang, X., Muhammad, F., Yu, L., Jiao, B., Shiau, Y., Li, D.: Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron. Ceram. Int. 44(3), 3454–3463 (2018)

    Article  Google Scholar 

  29. Sun, T., Chen, J., Lei, X., Zhou, C.: Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. J. Environ. Chem. Eng. 2(1), 304–309 (2014)

    Article  Google Scholar 

  30. Guo, B., et al.: Immobilization mechanism of Pb in fly ash-based geopolymer. Constr. Build. Mater. 134, 123–130 (2017)

    Article  Google Scholar 

  31. Shahedan, N., Abdullah, M.M.A.B., Kamarudin, H., Yahya, Z., Razak, R., Jamaludin, L.: Reviews on the different sources materials to the geopolymer performance. Adv. Environ. Biol. 7, 3835–3842 (2013)

    Google Scholar 

  32. van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 57(7), 1272–1280 (2003)

    Article  Google Scholar 

  33. Xu, H., van Deventer, J.S.J.: Effect of Source Materials on Geopolymerization. Ind. Eng. Chem. Res. 42(8), 1698–1706 (2003)

    Article  Google Scholar 

  34. Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lukey, G.C.: A Comparative Study of Kaolinite Versus Metakaolinite in Fly Ash Based Geopolymers Containing Immobilized Metals. Chem. Eng. Commun. 191(4), 531–549 (2004)

    Article  Google Scholar 

  35. Al-Mashqbeh, A., Abuali, S., El-Eswed, B., Khalili, F.I.: Immobilization of toxic inorganic anions (Cr2O72-, MnO4- and Fe(CN)63-) in metakaolin based geopolymers: a preliminary study. Ceram. Int. 44(5), 5613–5620 (2018)

    Article  Google Scholar 

  36. Zhang, Z.H., Zhu, H.J., Zhou, C.H., Wang, H.: Geopolymer from Kaolin in China: an overview. Appl. Clay Sci. 119, 31–41 (2016)

    Article  Google Scholar 

  37. El-Eswed, B.I., Yousef, R.I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S.I., Khalili, F.: Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 137, 34–42 (2015)

    Article  Google Scholar 

  38. Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., Vale, J.: Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 88(7), 1185–1193 (2009)

    Article  Google Scholar 

  39. Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671 (2010)

    Article  Google Scholar 

  40. Aly, Z., et al.: Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J. Nucl. Mater. 378(2), 172–179 (2008)

    Article  Google Scholar 

  41. Lee, S., van Riessen, A., Chon, C.-M., Kang, N.-H., Jou, H.-T., Kim, Y.-J.: Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J. Hazard. Mater. 305, 59–66 (2016)

    Article  Google Scholar 

  42. Aredes, F.G.M., Campos, T.M.B., Machado, J.P.B., Sakane, K.K., Thim, G.P., Brunelli, D.D.: Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 41(6), 7302–7311 (2015)

    Article  Google Scholar 

  43. Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T., Miladinović, Z.: Immobilization of hexavalent chromium by fly ash-based geopolymers. Compos. Part B Eng. 112, 213–223 (2017)

    Article  Google Scholar 

  44. Nikolić, V., Komljenović, M., Džunuzović, N., Miladinović, Z.: The influence of Pb addition on the properties of fly ash-based geopolymers. J. Hazard. Mater. 350, 98–107 (2018)

    Article  Google Scholar 

  45. Donatello, S., Fernández-Jiménez, A., Palomo, A.: An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. J. Hazard. Mater. 213–214, 207–215 (2012)

    Article  Google Scholar 

  46. Rattanasak, U., Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078 (2009)

    Article  Google Scholar 

  47. van Jaarsveld, J.G.S., van Deventer, J.S.J.: Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 38(10), 3932–3941 (1999)

    Article  Google Scholar 

  48. Luna Galiano, Y., Fernández Pereira, C., Vale, J.: Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 185(1), 373–381 (2011)

    Article  Google Scholar 

  49. Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)

    Article  Google Scholar 

  50. Komnitsas, K., Zaharaki, D., Bartzas, G.: Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 73, 103–109 (2013)

    Article  Google Scholar 

  51. CN-HJ, Solid Waste-Extraction Procedure for Leaching Toxicity-sulphuric Acid and Nitric Acid 18 Method (HJ/T 299-2007) (2007)

    Google Scholar 

  52. US EPA: Test methods for evaluating solid wastes, toxicity characteristic leaching procedure (TCLP), Method 1311 SW-846, 3rd ed. Environmental Protection Agency, Washington, DC, USA (1986)

    Google Scholar 

  53. Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges, BSI British Standards

    Google Scholar 

  54. Bakharev, T.: Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35(4), 658–670 (2005)

    Article  Google Scholar 

  55. Luo, H., Cheng, Y., He, D., Yang, E.-H.: Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 668, 90–103 (2019)

    Article  Google Scholar 

  56. Jing, C., Meng, X., Korfiatis, G.P.: Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests. J. Hazard. Mater. 114(1), 101–110 (2004)

    Article  Google Scholar 

  57. Du, Y.-J., Wei, M.-L., Reddy, K.R., Liu, Z.-P., Jin, F.: Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J. Hazard. Mater. 271, 131–140 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Fellah Imad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imad, E.F., Mohammed, A., Laïla, B.A. (2020). A Review of Research on the Treatment of Metallic Pollution by Using a Green Construction Material. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Advances in Intelligent Systems and Computing, vol 1104. Springer, Cham. https://doi.org/10.1007/978-3-030-36671-1_6

Download citation

Publish with us

Policies and ethics