Skip to main content

Process of Thermal Decomposition of Lithium Carbonate

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

In recent years, the methods of lithium preparation by metallothermic reduction of its oxide in negative pressure have been developed. Since Li2CO3 was considered as an important raw material for the preparation of Li2O, it is important to clarify the decomposition and melting mechanisms of Li2CO3. The behaviors of decomposition of lithium carbonate under argon, carbon dioxide, and negative pressure were studied by thermogravimetric behavior. Results showed that the decomposition of Li2CO3 can be divided into two steps and the mass loss under different atmospheric conditions is different. The first decomposition temperature of carbonate was 1000 K in argon gas. Decomposition of lithium carbonate was a complex process, including the multiple reactions such as melting of lithium carbonate , dissolution of Li2O and CO2 in Li2CO3, and adsorption of CO2 in Li2O. The first step of the decomposition is reduced, and the second step of the decomposition is increased in carbon dioxide atmosphere or negative pressure, compared with the condition of the argon gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang B (1999) Study on extracting metallic lithium form Li2CO3 by vacuum metallurgy. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  2. Fan FX (2012) Research of vacuum thermal reduction preparation of metallic lithium iron. Master Thesis of Kunming University of Science and Technology, Kunming

    Google Scholar 

  3. Bazhenov AA, Miklushevskii VV, Vatulin II, Kropacheva EN, Bidylo AP (2010) Study of the process of dissociation of lithium carbonate in the presence of aluminum powder. Russian J Non-Ferrous Metals 51(1):44–48

    Article  Google Scholar 

  4. Kulifeev VK, Vatulin II, Tarasov VP, Miklushevskii VV (2004) Technology of producing lithium metal by aluminothermic reduction of lithium aluminates. Russian J Non-Ferrous Metals 45(11):6–14

    Google Scholar 

  5. Dai YN, Yang B (2008) Vacuum metallurgy of non-ferrous metal materials. Metallurgical Industry Press, Beijing

    Google Scholar 

  6. Di YZ, Feng NX, Dong WW, Peng JP, Wang YW (2009) Study on thermal decomposition of Li2CO3 in production of lithium by vacuum thermal reduction process. Nonferrous Metals (Extractive Metallurgy) 6

    Google Scholar 

  7. Olivares RI, Chen C, Wright S (2012) The thermal stability of molten lithium–sodium–potassium carbonate and the influence of additives on the melting point. J Sol Energy Eng 134(4):041002

    Article  Google Scholar 

  8. El-Shobaky GA, Ibrahim AA (1987) Solid-solid interactions between ferric oxide and lithium carbonate and the thermal stability of the lithium ferrites produced. Thermochem Acta 118:151–158

    Article  Google Scholar 

  9. Pasierb P, Gajerski R, Rokita M, Rekas M (2001) Studies on the binary system Li2CO3–BaCO3. Physica B 304(1–4):463–476

    Article  Google Scholar 

  10. Pasierb P, Gajerski R, Komornicki S, Rękas M (2001) Structural properties and thermal behavior of Li2CO3–BaCO3 system by DTA, TG and XRD measurements. J Therm Anal Calorim 65(2):457–466

    Article  Google Scholar 

  11. Ahamad L, Rakshit SK, Parida SC, Naik YP, Rao GR, Kulkarni SG, Gadkari SC (2013) Solid-state synthesis and heat capacity measurements of ceramic compounds LiAlSiO4, LiAlSi2O6, LiAlSi3O8, and LiAlSi4O10. J Therm Anal Calorim 112(1):17–23

    Article  Google Scholar 

  12. Licht S (2012) Stabilization of STEP electrolyses in lithium-free molten carbonates. arXiv preprint arXiv:1209.3512

  13. Kim JW, Lee HG (2001) Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metall Mater Trans B 32(1):17–24

    Article  Google Scholar 

  14. Berbenni V, Milanese C, Bruni G, Girella A, Marini A (2013) Synthesis of Li2SnO3 by solid state reaction and characterization by TG/DSC, XRPD, and MTDSC. J Therm Anal Calorim 113(2):763–767

    Article  Google Scholar 

  15. Surzhikov AP, Pritulov AM, Lysenko EN, Sokolovskii AN, Vlasov VA, Vasendina EA (2011) Dependence of lithium–zinc ferrospinel phase composition on the duration of synthesis in an accelerated electron beam. J Therm Anal Calorim 110(2):733–738

    Article  Google Scholar 

  16. Timoshevskii AN, Ktalkherman MG, Emel’kin VA, Pozdnyakov BA, Zamyatin AP (2008) High-temperature decomposition of lithium carbonate at atmospheric pressure. High Temp 46(3):414–421

    Article  Google Scholar 

  17. Čančarevič Ž, Schön JC, Jansen M (2006) Alkali metal carbonates at high pressure. Zeitschrift für anorganische und allgemeine Chemie 632(8–9):1437–1448

    Article  Google Scholar 

  18. Cancarevic Z, Schön JC, Jansen M (2006) Existence of alkali-metal orthocarbonates at high pressure. Z Anorg Allg Chem 632(12–13):2084

    Article  Google Scholar 

  19. Kaplan V, Wachtel E, Lubomirsky I (2011) Conditions of stability for (Li2CO3 + Li2O) melts in air. J Chem Thermodyn 43(11):1623–1627

    Article  Google Scholar 

  20. Kaplan V, Wachtel E, Lubomirsky I (2014) CO2 to CO electrochemical conversion in molten Li2CO3 is stable with respect to sulfur contamination. J Electrochem Soc 161(1):F54–F57

    Article  Google Scholar 

  21. Kaplan V, Wachtel E, Lubomirsky I (2012) Titanium carbide coating of titanium by cathodic deposition from a carbonate melt. J Electrochem Soc 159(11):E159–E161

    Article  Google Scholar 

  22. Duan Y, Sorescu DC (2009) Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3: application to CO2 capture reaction. Phys Rev B 79(1):014301

    Article  Google Scholar 

  23. Kaplan V, Wachtel E, Gartsman K, Feldman Y, Lubomirsky I (2010) Conversion of CO2 to CO by electrolysis of molten lithium carbonate. J Electrochem Soc 157(4):B552–B556

    Article  Google Scholar 

  24. Mosqueda HA, Vazquez C, Bosch P, Pfeiffer H (2006) Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem Mater 18(9):2307–2310

    Article  Google Scholar 

  25. Ktalkherman MG, Emelkin VA, Pozdnyakov BA (2009) Production of lithium oxide by decomposition lithium carbonate in the flow of a heat carrier. Theor Found Chem Eng 43(1):88–93

    Article  Google Scholar 

Download references

Acknowledgements

The present project was financially supported by the National Natural Science Foundation of China Project (Grant No. 51604133) and the Academician Free Exploration Fund of Yunnan Province, China (Grant No. 2018HA006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, L., Qu, T., Liu, D., Deng, Y., Yang, B., Dai, Y. (2020). Process of Thermal Decomposition of Lithium Carbonate. In: Lee, J., Wagstaff, S., Lambotte, G., Allanore, A., Tesfaye, F. (eds) Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36556-1_10

Download citation

Publish with us

Policies and ethics