Skip to main content

Effect of Ni–Nb Metallic Glass on Moderating the Shock Damage in Crystalline Ni-Amorphous Ni62Nb38 Nanocomposite Structure: A Molecular Dynamics Study

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5878 Accesses

Abstract

Due to high strength and better corrosion properties, Ni-based alloy components are used in different machineries that are exposed to extreme/impact loading conditions. Structural re-designing of this metallic system can improve their impact resistance and bearing capacity. In this perspective, we have performed molecular dynamics simulation to analyze the effect of Ni–Nb metallic glass on attenuating the shock damage in crystalline Ni-amorphous Ni–Nb nanolaminate structure. Results have shown that the Ni62Nb38 metallic glass has effectively mitigated the damage in the crystalline Ni region at 0.5 and 0.8 km/s. Structurally, Ni62Nb38 metallic glass has shown better stability as higher icosahedral clusters are observed when compared with other Ni–Nb glass compositions after the shock propagation. However, at higher shock velocities, the presence of amorphous phase in the nanolaminate is insignificant as the shock causes large dislocation generation and localized amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun C, Kirk M, Li M, Hattar K, Wang Y, Anderoglu O, Valdez J, Uberuaga BP, Dickerson R, Maloy SA (2015) Microstructure, chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature. Acta Mater 95:357–365

    Article  CAS  Google Scholar 

  2. Caron P, Khan T (1999) Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol 3(8):513–523

    Article  Google Scholar 

  3. El-Awadi GA, Abdel-Samad S, Elshazly ES (2016) Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys. Appl Surf Sci 378:224–230

    Article  CAS  Google Scholar 

  4. Özgün Ö, Yılmaz R, Gülsoy HÖ, Fındık F (2015) The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts. Mater Charact 108:8–15

    Article  Google Scholar 

  5. Lin YC, Deng J, Jiang YQ, Wen DX, Liu G (2014) Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater Des 55:949–957

    Article  CAS  Google Scholar 

  6. Hong HU, Kang JG, Choi BG, Kim IS, Yoo YS, Jo CY (2011) A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int J Fatigue 33(12):1592–1599

    Article  CAS  Google Scholar 

  7. Wang Y, Li J, Hamza AV, Barbee TW (2007) Ductile crystalline–amorphous nanolaminates. Proc Natl Acad Sci 104(27):11155–11160

    Article  CAS  Google Scholar 

  8. Kim JY, Jang D, Greer JR (2011) Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv Funct Mater 21(23):4550–4554

    Article  CAS  Google Scholar 

  9. Cui Y, Huang P, Wang F, Lu TJ, Xu KW (2015) The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers. Thin Solid Films 584:270–276

    Article  CAS  Google Scholar 

  10. Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5(1):1–19

    Article  Google Scholar 

  11. Reddy KV, Deng C, Pal S (2019) Dynamic characterization of shock response in crystalline-metallic glass nanolaminates. Acta Mater 164:347–361

    Article  CAS  Google Scholar 

  12. Reddy KV, Pal S (2017) Contribution of Nb towards enhancement of glass forming ability and plasticity of Ni–Nb binary metallic glass. J Non-Cryst Solids 471:243–250

    Article  Google Scholar 

  13. Wang ZM, Zhang J, Chang XC, Hou WL, Wang JQ (2010) Structure inhibited pit initiation in a Ni–Nb metallic glass. Corros Sci 52(4):1342–1350

    Article  CAS  Google Scholar 

  14. Tai KP, Wang LT, Liu BX (2007) Distinct atomic structures of the Ni–Nb metallic glasses formed by ion beam mixing. J Appl Phys 102(12):124902

    Article  Google Scholar 

  15. Hai L, Jie H, Zhi-xuan Z, Zhao-xia M (2017) Atomistic simulations of elastic-plastic deformation in nickel single crystal under shock loading. Procedia Eng 204:397–404

    Article  CAS  Google Scholar 

  16. Gunkelmann N, Bringa EM, Tramontina DR, Ruestes CJ, Suggit MJ, Higginbotham A, Wark JS, Urbassek HM (2014) Shock waves in polycrystalline iron: plasticity and phase transitions. Phys Rev B 89(14):140102

    Article  Google Scholar 

  17. Ye C, Liu Y, Sang X, Ren Z, Zhao J, Hou X, Dong Y (2015) Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening. J Appl Phys 118(13):134902

    Article  Google Scholar 

  18. Zhao S, Germann TC, Strachan A (2006) Atomistic simulations of shock-induced alloying reactions in Ni∕Al nanolaminates. J Chem Phys 125(16):164707

    Article  Google Scholar 

  19. Han WZ, Misra A, Mara NA, Germann TC, Baldwin JK, Shimada T, Luo SN (2011) Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos Mag 91(32):4172–4185

    Article  CAS  Google Scholar 

  20. Han WZ, Cerreta EK, Mara NA, Beyerlein IJ, Carpenter JS, Zheng SJ, Trujillo CP, Dickerson PO, Misra A (2014) Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater 63:150–161

    Article  CAS  Google Scholar 

  21. Jian WR, Wang L, Yao XH, Luo SN (2018) Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: effects of layer thickness and interface type. Comput Mater Sci 154:225–233

    Article  CAS  Google Scholar 

  22. Nasim M, Li Y, Wen C (2019) Individual layer thickness-dependent microstructures and mechanical properties of fcc/fcc Ni/Al nanolaminates and their strengthening mechanisms. Materialia 6:100347

    Article  Google Scholar 

  23. Bataev IA, Hokamoto K, Keno H, Bataev AA, Balagansky IA, Vinogradov AV (2015) Metallic glass formation at the interface of explosively welded Nb and stainless steel. Met Mater Int 21(4):713–718

    Article  CAS  Google Scholar 

  24. Xiang H, Li H, Fu T, Zhu W, Huang C, Yang B, Peng X (2018) Shock-induced stacking fault pyramids in Ni/Al multilayers. Appl Surf Sci 427:219–225

    Article  CAS  Google Scholar 

  25. Zhang RF, Germann TC, Wang J, Liu XY, Beyerlein IJ (2013) Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: non-equilibrium molecular dynamics simulations. Scr Mater 68(2):114–117

    Article  Google Scholar 

  26. Yu P, Kim KB, Das J, Baier F, Xu W, Eckert J (2006) Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite. Scr Mater 54(8):1445–1450

    Article  CAS  Google Scholar 

  27. Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:026103

    Article  Google Scholar 

  28. Xu TD, Wang XD, Zhang H, Cao QP, Zhang DX, Jiang JZ (2017) Structural evolution and atomic dynamics in Ni–Nb metallic glasses: a molecular dynamics study. J Chem Phys 147(14):144503

    Article  CAS  Google Scholar 

  29. Ma Y, Ye JH, Peng GJ, Wen DH, Zhang TH (2015) Nanoindentation study of size effect on shear transformation zone size in a Ni–Nb metallic glass. Mater Sci Eng A 627:153–160

    Article  CAS  Google Scholar 

  30. Sarker S, Isheim D, King G, An Q, Chandra D, Morozov SI, Page K, Wermer JN, Seidman DN, Dolan M (2018) Icosahedra clustering and short range order in Ni–Nb–Zr amorphous membranes. Sci Rep 8(1):6084

    Article  CAS  Google Scholar 

  31. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  32. Zhang Y, Ashcraft R, Mendelev MI, Wang CZ, Kelton KF (2016) Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J Chem Phys 145(20):204505

    Article  CAS  Google Scholar 

  33. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  34. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085

    Article  CAS  Google Scholar 

  35. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963

    Article  CAS  Google Scholar 

  36. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  37. Rogachev AS, Vadchenko SG, Aronin AS, Rouvimov S, Nepapushev AA, Kovalev ID, Baras F, Politano O, Rogachev SA, Mukasyan AS (2017) Self-propagating waves of crystallization in metallic glasses. Appl Phys Lett 111(9):093105

    Article  Google Scholar 

  38. Belouarda K, Trady S, Saadouni K, Mazroui M (2019) Influence of mechanical tensile and compression tests under high strain rate on structural properties of copper monatomic metallic glass. Eur Phys J B 92(3):50

    Article  Google Scholar 

  39. Tong X, Wang G, Stachurski ZH, Bednarčík J, Mattern N, Zhai QJ, Eckert J (2016) Structural evolution and strength change of a metallic glass at different temperatures. Sci Rep 6:30876

    Article  CAS  Google Scholar 

  40. Liang YC, Liu RS, Mo YF, Liu HR, Tian ZA, Zhou QY, Zhang HT, Zhou LL, Hou ZY, Peng P (2014) Influence of icosahedral order on the second peak splitting of pair distribution function for Mg70Zn30 metallic glass. J Alloys Compd 597:269–274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijay Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vijay Reddy, K., Pal, S. (2020). Effect of Ni–Nb Metallic Glass on Moderating the Shock Damage in Crystalline Ni-Amorphous Ni62Nb38 Nanocomposite Structure: A Molecular Dynamics Study. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_85

Download citation

Publish with us

Policies and ethics