Skip to main content

Microenvironment in Cardiac Tumor Development: What Lies Beyond the Event Horizon?

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

Cardiac tumors are found in less than 1% of adult and pediatric autopsies. More than three-fourths of primary cardiac neoplasms are benign, with myxomas and rhabdomyomas being the most common cardiac tumors seen in adults and children, respectively. Primary malignant cardiac tumors are extremely rare, whereas metastatic lesions can be seen in approximately 8% of patients dying from cancer. Attempting to understand why the heart is so resistant to carcinogenesis and which fail-safe mechanisms malfunction when cardiac tumors do develop is particularly challenging considering the rarity of these tumors and the fact that when relevant clinical studies are published, they rarely focus on molecular pathogenesis. Apart from cancer cells, solid tumors are comprised of a concoction of noncancerous cells, and extracellular matrix constituents, which along with pH and oxygen levels jointly constitute the so-called tumor microenvironment (TME). In the present chapter, we explore mechanisms through which TME may influence cardiac carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uzun O, Wilson DG, Vujanic GM, Parsons JM, De Giovanni JV (2007) Cardiac tumours in children. Orphanet J Rare Dis 2:11

    Article  Google Scholar 

  2. Molina JE, Edwards JE, Ward HB (1990) Primary cardiac tumors: experience at the University of Minnesota. Thorac Cardiovasc Surg 38(Suppl 2):183–191

    Article  Google Scholar 

  3. Kamiya H, Yasuda T, Nagamine H, Sakakibara N, Nishida S, Kawasuji M et al (2001) Surgical treatment of primary cardiac tumors: 28 years’ experience in Kanazawa University Hospital. Jpn Circ J 65(4):315–319

    Article  CAS  Google Scholar 

  4. Odim J, Reehal V, Laks H, Mehta U, Fishbein MC (2003) Surgical pathology of cardiac tumors. Two decades at an urban institution. Cardiovasc Pathol 12(5):267–270

    Article  Google Scholar 

  5. Shi L, Wu L, Fang H, Han B, Yang J, Ma X et al (2017) Identification and clinical course of 166 pediatric cardiac tumors. Eur J Pediatr 176(2):253–260

    Article  Google Scholar 

  6. Tazelaar HD, Locke TJ, McGregor CG (1992) Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc 67(10):957–965

    Article  CAS  Google Scholar 

  7. Tzani A, Doulamis IP, Mylonas KS, Avgerinos DV, Nasioudis D (2017) Cardiac tumors in pediatric patients: a systematic review. World J Pediatr Congenit Heart Surg 8(5):624–632

    Article  Google Scholar 

  8. Ying L, Lin R, Gao Z, Qi J, Zhang Z, Gu W (2016) Primary cardiac tumors in children: a center’s experience. J Cardiothorac Surg 11(1):52

    Article  Google Scholar 

  9. Silvestri F, Bussani R, Pavletic N, Mannone T (1997) Metastases of the heart and pericardium. G Ital Cardiol 27(12):1252–1255

    CAS  PubMed  Google Scholar 

  10. Longo R, Mocini D, Santini M, Giannantoni P, Carillio G, Torino F et al (2004) Unusual sites of metastatic malignancy: Case 1. Cardiac metastasis in hepatocellular carcinoma. J Clin Oncol 22(24):5012–5014

    Article  Google Scholar 

  11. Savoia P, Fierro MT, Zaccagna A, Bernengo MG (2000) Metastatic melanoma of the heart. J Surg Oncol 75(3):203–207

    Article  CAS  Google Scholar 

  12. Reynen K, Kockeritz U, Strasser RH (2004) Metastases to the heart. Ann Oncol Off J Eur Soc Med Oncol 15(3):375–381

    Article  CAS  Google Scholar 

  13. Goldberg AD, Blankstein R, Padera RF (2013) Tumors metastatic to the heart. Circulation 128(16):1790–1794

    Article  Google Scholar 

  14. Tessmer G (2018) How it feels to be swallowed by a black hole. Nature 563:592

    Article  CAS  Google Scholar 

  15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  Google Scholar 

  16. Hirata E, Sahai E (2017) Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med 7(7). https://doi.org/10.1101/cshperspect.a026781

    Article  Google Scholar 

  17. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  Google Scholar 

  18. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  19. Tahmasebi Birgani M, Carloni V (2017) Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. Int J Mol Sci 18(2). https://doi.org/10.3390/ijms18020405

    Article  Google Scholar 

  20. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23(6 Pt B):522–532

    Article  CAS  Google Scholar 

  21. Sormendi S, Wielockx B (2018) Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol 9:40

    Article  Google Scholar 

  22. Netea-Maier RT, Smit JWA, Netea MG (2018) Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett 413:102–109

    Article  CAS  Google Scholar 

  23. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111

    Article  CAS  Google Scholar 

  24. Cedervall J, Dimberg A, Olsson A-K (2015) Tumor-induced local and systemic impact on blood vessel function. Mediat Inflamm 2015:418290

    Article  CAS  Google Scholar 

  25. Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A et al (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 75(13):2653–2662

    Article  CAS  Google Scholar 

  26. Grigorian-Shamagian L, Fereydooni S, Liu W, Echavez A, Marban E (2017) Harnessing the heart’s resistance to malignant tumors: cardiac-derived extracellular vesicles decrease fibrosarcoma growth and leukemia-related mortality in rodents. Oncotarget 8(59):99624–99636

    Article  Google Scholar 

  27. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122(9):928–937

    Article  Google Scholar 

  28. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572. https://doi.org/10.1038/nrc865

    Article  CAS  PubMed  Google Scholar 

  29. Kellner J, Sivajothi S, McNiece I (2015) Differential properties of human stromal cells from bone marrow, adipose, liver and cardiac tissues. Cytotherapy 17(11):1514–1523

    Article  CAS  Google Scholar 

  30. Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S et al (2010) Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 89(3):650–660. https://doi.org/10.1093/cvr/cvq290

    Article  CAS  PubMed  Google Scholar 

  31. Gaur K, Majumdar K, Kisku N, Gondal R, Sakhuja P, Satsangi DK (2017) Primary intracardiac leiomyoma arising from cardiomyocyte progenitors at the right ventriculoseptal interface: case report with literature review. Cardiovasc Pathol 28:46–50

    Article  Google Scholar 

  32. Qian X-J, Li X-L, Xu X, Wang X, Feng Q-T, Yang C-J (2015) Alpha-SMA-Cre-mediated excision of PDK1 reveals an essential role of PDK1 in regulating morphology of cardiomyocyte and tumor progression in tissue microenvironment. Pathol Biol (Paris) 63(2):91–100

    Article  Google Scholar 

  33. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851. Available from: http://www.sciencedirect.com/science/article/pii/S0092867409000683

    Article  CAS  Google Scholar 

  34. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet (London, England) 379(9819):895–904

    Article  Google Scholar 

  35. Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR et al (2015) Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J 36(12):751–762

    Article  CAS  Google Scholar 

  36. Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, DeMaria A et al (2017) ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) trial: rationale and design. Cell Transplant 26(2):205–214

    Article  Google Scholar 

  37. Tsilimigras DI, Oikonomou EK, Moris D, Schizas D, Economopoulos KP, Mylonas KS (2017) Stem cell therapy for congenital heart disease: a systematic review. Circulation 136(24):2373–2385

    Article  Google Scholar 

  38. Ibrahim AG-E, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619

    Article  CAS  Google Scholar 

  39. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L et al (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956

    Article  CAS  Google Scholar 

  40. Polanska UM, Orimo A (2013) Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 228(8):1651–1657

    Article  CAS  Google Scholar 

  41. Coleman DT, Gray AL, Stephens CA, Scott ML, Cardelli JA (2016) Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget 7(22):32200–32209

    PubMed  PubMed Central  Google Scholar 

  42. Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73(16):4965–4977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mylonas, K.S., Ziogas, I.A., Avgerinos, D.V. (2020). Microenvironment in Cardiac Tumor Development: What Lies Beyond the Event Horizon?. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_4

Download citation

Publish with us

Policies and ethics