Skip to main content

Advertisement

Log in

The role of cardiac microenvironment in cardiovascular diseases: implications for therapy

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

IVIG:

Intravenous immunoglobulin

ECM:

Extracellular matrix

PDGFRα:

Platelet-derived growth factor receptor α

Ang II:

Angiotensin II

EndoMT:

Endothelial-to-mesenchymal transition

NO:

Nitric Oxide

ET-1:

Endothelin-1

iNOS:

Inducible nitric oxide synthase

HCM:

Hypertrophic cardiomyopathy

DCM:

Dilated cardiomyopathy

RCM:

Restrictive cardiomyopathy

ACM:

Arrhythmia Cardiomyopathy

SR:

Sarcoplasmic reticulum

RYR2:

Ryanodine receptor 2

SERCA:

Sarco/endoplasmic reticulum Ca2+-ATPase

cTnC:

Cardiac troponin C

FGF2:

Fibroblast growth factor 2

PDGF:

Platelet-derived growth factor

HF:

Heart failure

eNOS:

Endothelial nitric oxide synthase

ROS:

Reactive oxygen species

MI:

Myocardial infarction

MMPs:

Matrix metalloproteinases

DCs:

Dendritic cells

MSCs:

Mesenchymal stem cells

HSCs:

Hematopoietic stem cells

EPCs:

Endothelial progenitor cells

CSCs:

Cardiac stem cells

iPSCs:

Embryonic stem cells and induced pluripotent stem cells

bFGF:

Basic fibroblast growth factor

VEGF:

Vascular endothelial growth factor

LVEF:

Left ventricular ejection fraction

AdMSC:

Adipose-derived mesenchymal stem cell

VEGFR2:

Vascular endothelial growth factor receptor 2

hESCs:

Human embryonic stem cells

CAR-T:

Chimeric antigen receptor T cell

NHEJ:

Non-homologous terminal ligation

HDR:

Homologous recombinant repair

MYH6:

Myosin heavy chain 6

MYBPC3:

Myosin-binding protein C3

AAV:

Adeno-associated virus

References

  1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394:1145–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Takeda N, Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam. 2011;2011: 535241.

    PubMed  PubMed Central  Google Scholar 

  4. Aggarwal M, Aggarwal B, Rao J. Integrative medicine for cardiovascular disease and prevention. Med Clin North Am. 2017;101:895–923.

    Article  PubMed  Google Scholar 

  5. Mishra S, Chatterjee S. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes. Glycobiology. 2014;24:518–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu T, Wen H, Li H, et al. Oleic acid attenuates Ang II (Angiotensin II)-induced cardiac remodeling by inhibiting FGF23 (Fibroblast Growth Factor 23) expression in mice. Hypertension. 2020;75:680–92.

    Article  CAS  PubMed  Google Scholar 

  7. Gruver CL, DeMayo F, Goldstein MA, Means AR. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology. 1993;133:376–88.

    Article  CAS  PubMed  Google Scholar 

  8. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirose K, Payumo AY, Cutie S, et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science. 2019;364:184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu S, Tang L, Zhao X, et al. Yap promotes noncanonical wnt signals from cardiomyocytes for heart regeneration. Circ Res. 2021;129:782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frias MA, Pedretti S, Hacking D, et al. HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis. 2013;228:110–6.

    Article  CAS  PubMed  Google Scholar 

  12. Shende P, Xu L, Morandi C, et al. Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc Res. 2016;109:103–14.

    Article  CAS  PubMed  Google Scholar 

  13. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65:40–51.

    Article  CAS  PubMed  Google Scholar 

  14. Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol. 2020;82:63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokota T, McCourt J, Ma F, et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell. 2020;182:545-62.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ivey MJ, Kuwabara JT, Riggsbee KL, Tallquist MD. Platelet-derived growth factor receptor-α is essential for cardiac fibroblast survival. Am J Physiol Heart Circ Physiol. 2019;317:H330–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jang SW, Ihm SH, Choo EH, et al. Imatinib mesylate attenuates myocardial remodeling through inhibition of platelet-derived growth factor and transforming growth factor activation in a rat model of hypertension. Hypertension. 2014;63:1228–34.

    Article  CAS  PubMed  Google Scholar 

  19. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.

    Article  CAS  PubMed  Google Scholar 

  20. Nicin L, Wagner JUG, Luxán G, Dimmeler S. Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Lett. 2022;596:638–54.

    Article  CAS  PubMed  Google Scholar 

  21. Stewart L, Turner NA. Channelling the force to reprogram the matrix: mechanosensitive ion channels in cardiac fibroblasts. Cells. 2021;10:990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

    Article  CAS  PubMed  Google Scholar 

  23. Augustin HG, Koh GY. Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science. 2017;357:6353.

    Article  Google Scholar 

  24. Anbara T, Sharifi M, Aboutaleb N. Endothelial to mesenchymal transition in the cardiogenesis and cardiovascular diseases. Curr Cardiol Rev. 2020;16:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sánchez-Duffhues G. García de Vinuesa A, van de Pol V, Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol. 2019;247:333–46.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124: 151833.

    Article  CAS  PubMed  Google Scholar 

  27. Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45:A25-32.

    Article  PubMed  Google Scholar 

  28. Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319:H613–31.

    Article  CAS  PubMed  Google Scholar 

  29. Mao C, Ma Z, Jia Y, et al. Nidogen-2 maintains the contractile phenotype of vascular smooth muscle cells and prevents neointima formation via bridging jagged1-notch3 signaling. Circulation. 2021;144:1244–61.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Zheng J, Du Y, et al. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ Res. 2010;106:514–25.

    Article  CAS  PubMed  Google Scholar 

  31. Cai Z, Xie N, Gong Z, et al. Activin receptor-like kinase 3 directly couples gαq (guanine nucleotide-binding protein subunit αq)/ gαq (guanine nucleotide-binding protein subunit α11) to regulate vascular contractility. Hypertension. 2023;80:1231–44.

    Article  CAS  PubMed  Google Scholar 

  32. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  33. Kong X, Gao J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med. 2017;21:941–54.

    Article  PubMed  Google Scholar 

  34. Fukui S, Iwamoto N, Takatani A, et al. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front Immunol. 2017;8:1958.

    Article  PubMed  Google Scholar 

  35. Zhang YH, He M, Wang Y, Liao AH. Modulators of the balance between M1 and M2 macrophages during PREGNANCY. Front Immunol. 2017;8:120.

    PubMed  PubMed Central  Google Scholar 

  36. Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol. 2014;70:64–73.

    Article  CAS  PubMed  Google Scholar 

  37. Weber K T, Brilla C G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991 83 1849–65.

  38. Butt RP, Laurent GJ, Bishop JE. Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity. Ann N Y Acad Sci. 1995;752:387–93.

    Article  CAS  PubMed  Google Scholar 

  39. Montiel-Jaen MG, Monsalvo-Villegas A, Ávila G. Modulating ALDH2 reveals a differential dependence on ROS for hypertrophy and SR Ca(2+) release in aldosterone-treated cardiac myocytes. Biochem Biophys Res Commun. 2021;536:7–13.

    Article  CAS  PubMed  Google Scholar 

  40. Fujisaki H, Ito H, Hirata Y, et al. Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest. 1995;96:1059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest. 1998;101:812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li P, Wang D, Lucas J, et al. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res. 2008;102:185–92.

    Article  CAS  PubMed  Google Scholar 

  43. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115.

    Article  CAS  PubMed  Google Scholar 

  44. Colliva A, Braga L, Giacca M, Zacchigna S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol. 2020;598:2923–39.

    Article  CAS  PubMed  Google Scholar 

  45. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol. 1992;263:H1318–21.

    CAS  PubMed  Google Scholar 

  46. Nakagawa Y, Nishikimi T. CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. Biology (Basel). 2022;11:986.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Moyes AJ, Hobbs AJ. C type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci. 2019;20:E2281.

    Article  Google Scholar 

  48. Soeki T, Kishimoto I, Okumura H, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45:608–16.

    Article  CAS  PubMed  Google Scholar 

  49. Špiranec K, Chen W, Werner F, et al. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation. 2018;138:494–508.

    Article  PubMed  Google Scholar 

  50. Perbellini F, Watson SA, Bardi I, Terracciano CM. Heterocellularity and Cellular Cross-Talk in the Cardiovascular System. Front Cardiovasc Med. 2018;5:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner JUG, Dimmeler S. Cellular cross-talks in the diseased and aging heart. J Mol Cell Cardiol. 2020;138:136–46.

    Article  CAS  PubMed  Google Scholar 

  52. Fiebeler A, Schmidt F, Müller DN, et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension. 2001;37:787–93.

    Article  CAS  PubMed  Google Scholar 

  53. Caprio M, Newfell BG, la Sala A, et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res. 2008;102:1359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tomasoni D, Adamo M, Lombardi CM, Metra M. Highlights in heart failure. ESC Heart Fail. 2019;6:1105–27.

    Article  PubMed  Google Scholar 

  55. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.

    Article  PubMed  Google Scholar 

  56. Del Monte F, Hajjar RJ. Intracellular devastation in heart failure. Heart Fail Rev. 2008;13:151–62.

    Article  PubMed  Google Scholar 

  57. Zuchi C, Tritto I, Carluccio E, Mattei C, Cattadori G, Ambrosio G. Role of endothelial dysfunction in heart failure. Heart Fail Rev. 2020;25:21–30.

    Article  CAS  PubMed  Google Scholar 

  58. Winlaw DS, Smythe GA, Keogh AM, Schyvens CG, Spratt PM, Macdonald PS. Increased nitric oxide production in heart failure. Lancet. 1994;344:373–4.

    Article  CAS  PubMed  Google Scholar 

  59. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J. 1991;65:245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bauersachs J, Schäfer A. Endothelial dysfunction in heart failure: mechanisms and therapeutic approaches. Curr Vasc Pharmacol. 2004;2:115–24.

    Article  CAS  PubMed  Google Scholar 

  61. Herum KM, Choppe J, Kumar A, Engler AJ, McCulloch AD. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell. 2017;28:1871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nagaraju CK, Dries E, Gilbert G, et al. Myofibroblast modulation of cardiac myocyte structure and function. Sci Rep. 2019;9:8879.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hall C, Gehmlich K, Denning C, Pavlovic D. Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J Am Heart Assoc. 2021;10: e019338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vasquez C, Mohandas P, Louie KL, Benamer N, Bapat AC, Morley GE. Enhanced fibroblast-myocyte interactions in response to cardiac injury. Circ Res. 2010;107:1011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Strassheim D, Dempsey EC, Gerasimovskaya E, Stenmark K, Karoor V. Role of Inflammatory Cell Subtypes in Heart Failure. J Immunol Res. 2019;2019:2164017.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15:117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci. 2020;21:9232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.

    Article  PubMed  Google Scholar 

  69. Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res. 2022;184: 106452.

    Article  CAS  PubMed  Google Scholar 

  70. Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109:86–96.

    Article  CAS  PubMed  Google Scholar 

  71. Shi X, Zhang Y, Gong Y, et al. Zebrafish hhatla is involved in cardiac hypertrophy. J Cell Physiol. 2021;236:3700–9.

    Article  CAS  PubMed  Google Scholar 

  72. Jiang Y, Li X, Guo T, et al. Ranolazine rescues the heart failure phenotype of PLN-deficient human pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports. 2022;17:804–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ho CY, López B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meng Q, Bhandary B, Bhuiyan MS, et al. Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-Induced cardiomyopathy. Circ Res. 2018;123:1285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koleini N, Santiago JJ, Nickel BE, et al. Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol. 2019;316:H279–88.

    Article  CAS  PubMed  Google Scholar 

  76. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124:2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. J Cell Physiol. 2019;234:2252–65.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang S, Li Y, Huang X, et al. Seamless genetic recording of transiently activated mesenchymal gene expression in endothelial cells during cardiac fibrosis. Circulation. 2021;144:2004–20.

    Article  CAS  PubMed  Google Scholar 

  79. Peng Q, Shan D, Cui K, et al. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11:1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma F, Li Y, Jia L, et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE. 2012;7: e35144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11:255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett. 2018;23:21.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol. 2011;194:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal. 2021;77: 109824.

    Article  CAS  PubMed  Google Scholar 

  86. Han M, Liu Z, Liu L, et al. Dual genetic tracing reveals a unique fibroblast subpopulation modulating cardiac fibrosis. Nat Genet. 2023;55:665–78.

    Article  CAS  PubMed  Google Scholar 

  87. Croquelois A, Domenighetti AA, Nemir M, et al. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;205:3173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou XL, Fang YH, Wan L, et al. Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling. J Cell Physiol. 2019;234:8834–45.

    Article  CAS  PubMed  Google Scholar 

  89. Wattanapitayakul SK, Weinstein DM, Holycross BJ, Bauer JA. Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. Faseb j. 2000;14:271–8.

    Article  CAS  PubMed  Google Scholar 

  90. Zaidi Y, Aguilar EG, Troncoso M, Ilatovskaya DV, DeLeon-Pennell KY. Immune regulation of cardiac fibrosis post myocardial infarction. Cell Signal. 2021;77: 109837.

    Article  CAS  PubMed  Google Scholar 

  91. Lindsey M, Wedin K, Brown MD, et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation. 2001;103:2181–7.

    Article  CAS  PubMed  Google Scholar 

  92. Rohde LE, Ducharme A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99:3063–70.

    Article  CAS  PubMed  Google Scholar 

  93. Wei Z, Fei Y, Wang Q, et al. Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation. Free Radic Biol Med. 2021;167:243–57.

    Article  CAS  PubMed  Google Scholar 

  94. Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF-β1/SMAD2 signaling pathway. PeerJ. 2021;9: e11501.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Qiu H, Liu W, Lan T, et al. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-β1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine. 2018;51:255–65.

    Article  CAS  PubMed  Google Scholar 

  96. Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: an overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med. 2010;1:43–52.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    Article  CAS  PubMed  Google Scholar 

  98. Ding DC, Shyu WC, Lin SZ, Li H. Current concepts in adult stem cell therapy for stroke. Curr Med Chem. 2006;13:3565–74.

    Article  CAS  PubMed  Google Scholar 

  99. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020;11:349.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I. Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells. 2018;10:106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20:5–14.

    Article  PubMed  Google Scholar 

  102. Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell. 2022;29:1515–30.

    Article  CAS  PubMed  Google Scholar 

  103. Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics. 2023;13:685–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mokhtari B, Aboutaleb N, Nazarinia D, et al. Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. Iran J Basic Med Sci. 2020;23:879–85.

    PubMed  PubMed Central  Google Scholar 

  105. Piao H, Youn TJ, Kwon JS, et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail. 2005;7:730–8.

    Article  CAS  PubMed  Google Scholar 

  106. Kawamoto A, Asahara T, Losordo DW. Transplantation of endothelial progenitor cells for therapeutic neovascularization. Cardiovasc Radiat Med. 2002;3:221–5.

    Article  PubMed  Google Scholar 

  107. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108:391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He J, Teng X, Yu Y, et al. Injection of Sca-1+/CD45+/CD31+ mouse bone mesenchymal stromal-like cells improves cardiac function in a mouse myocardial infarct model. Differentiation. 2013;86:57–64.

    Article  CAS  PubMed  Google Scholar 

  110. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008;197:496–503.

    Article  CAS  PubMed  Google Scholar 

  111. Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol. 2002;30:967–72.

    Article  CAS  PubMed  Google Scholar 

  112. Di Santo S, Yang Z, Wyler von Ballmoos M, et al. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE. 2009;4: e5643.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319:195–8.

    Article  CAS  PubMed  Google Scholar 

  114. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  115. Stastna M, Abraham MR, Van Eyk JE. Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Lett. 2009;583:1800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24:288–93.

    Article  CAS  PubMed  Google Scholar 

  117. Wang QR, Wang BH, Zhu WB, Huang YH, Li Y, Yan Q. An in vitro study of differentiation of hematopoietic cells to endothelial cells. Bone Marrow Res. 2011;2011: 846096.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Prunier F, Pfister O, Hadri L, et al. Delayed erythropoietin therapy reduces post-MI cardiac remodeling only at a dose that mobilizes endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2007;292:H522–9.

    Article  CAS  PubMed  Google Scholar 

  119. Döbert N, Britten M, Assmus B, et al. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT. Eur J Nucl Med Mol Imaging. 2004;31:1146–51.

    Article  PubMed  Google Scholar 

  120. Olivieri F, Mazzanti I, Abbatecola AM, et al. Telomere/Telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol. 2012;10:216–24.

    Article  CAS  PubMed  Google Scholar 

  121. Lee PS, Poh KK. Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells. 2014;6:355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther. 2020;11:483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan D, Wu H, Pan K, Peng H, Wu R. Regenerating Damaged Myocardium: A Review of Stem-Cell Therapies for Heart Failure. Cells. 2021;10:3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Menasché P. Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res. 2012;5:555–65.

    Article  PubMed  Google Scholar 

  125. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol. 2011;50:280–9.

    Article  CAS  PubMed  Google Scholar 

  126. Maliken BD, Molkentin JD. Undeniable Evidence That the Adult Mammalian Heart Lacks an Endogenous Regenerative Stem Cell. Circulation. 2018;138:806–8.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang J, Tian X, Peng C, et al. Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem Biophys Res Commun. 2018;503:482–9.

    Article  CAS  PubMed  Google Scholar 

  128. Catelain C, Riveron S, Papadopoulos A, et al. Myoblasts and embryonic stem cells differentially engraft in a mouse model of genetic dilated cardiomyopathy. Mol Ther. 2013;21:1064–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oettgen P, Boyle AJ, Schulman SP, et al. Cardiac stem cell therapy need for optimization of efficacy and safety monitoring. Circulation. 2006;114(353):8.

    Google Scholar 

  130. Li Z, Wilson KD, Smith B, et al. Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE. 2009;4: e8443.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  132. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  133. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99:79–114.

    Article  CAS  PubMed  Google Scholar 

  134. Rostovskaya M, Bredenkamp N, Smith A. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140365.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39:737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oksanen M, Petersen AJ, Naumenko N, et al. PSEN1 mutant iPSC-Derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports. 2017;9:1885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kashiyama N, Miyagawa S, Fukushima S, et al. MHC-mismatched allotransplantation of induced pluripotent stem cell-derived cardiomyocyte sheets to improve cardiac function in a primate ischemic cardiomyopathy model. Transplantation. 2019;103:1582–90.

    Article  CAS  PubMed  Google Scholar 

  138. Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation. 2021;144:210–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mallapaty S. Revealed: two men in China were first to receive pioneering stem-cell treatment for heart disease. Nature. 2020;581:249–50.

    Article  CAS  PubMed  Google Scholar 

  140. Kawamura T, Ito Y, Ito E, et al. Safety confirmation of induced pluripotent stem cell-derived cardiomyocyte patch transplantation for ischemic cardiomyopathy: first three case reports. Front Cardiovasc Med. 2023;10:1182209.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21:145–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Amini L, Silbert SK, Maude SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022;19:342–55.

    Article  PubMed  Google Scholar 

  143. Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375:91–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hampton T. Exploring the Potential of CAR-T Therapy for Heart Failure. JAMA. 2019;322:2066–7.

    Article  PubMed  Google Scholar 

  145. Dalal PJ, Patel NP, Feinstein MJ, Akhter N. Adverse cardiac effects of car t-cell therapy: characteristics, surveillance, management, and future research directions. Technol Cancer Res Treat. 2022;21:15330338221132928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24:1590–5.

    Article  PubMed  Google Scholar 

  147. Lefebvre B, Kang Y, Smith AM, Frey NV, Carver JR, Scherrer-Crosbie M. Cardiovascular effects of CAR T cell therapy: a retrospective study. JACC CardioOncol. 2020;2:193–203.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-Cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-hodgkin lymphoma. Circulation. 2020;142:1687–90.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang JP, Li XL, Li GH, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18:35.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23:R40–6.

    Article  CAS  PubMed  Google Scholar 

  151. Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet. 2015;52:289–96.

    Article  PubMed  Google Scholar 

  152. Xie C, Zhang YP, Song L, et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016;26:1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15.

    Article  PubMed  Google Scholar 

  154. Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.

    Article  CAS  PubMed  Google Scholar 

  155. Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kaneko M, Hashikami K, Yamamoto S, Matsumoto H, Nishimoto T. Phospholamban Ablation Using CRISPR/Cas9 System Improves Mortality in a Murine Heart Failure Model. PLoS ONE. 2016;11: e0168486.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. Febs j. 2014;281:5186–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82170370, 81770381), the Natural Science Foundation of Jiangsu Province (BK20211165) and Zhishan Youth Scholar Program of SEU.

Author information

Authors and Affiliations

Authors

Contributions

Jiayu Yao: prepared the original draft. Yuejun Chen: designed and prepared the figures. Yuqing Huang: collected the literature. Xiaoou Sun: manuscript revision. Xingjuan Shi: manuscript design, supervision and revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoou Sun or Xingjuan Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Informed consent Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Chen, Y., Huang, Y. et al. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Human Cell 37, 607–624 (2024). https://doi.org/10.1007/s13577-024-01052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01052-3

Keywords

Navigation