Skip to main content

The Intestinal Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironments in Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1226))

Abstract

The tumour microenvironment (TME) of intestinal tumours is highly complex and comprises a network of stromal cells, tumour cells, immune cells and fibroblasts, as well as microorganisms. The tumour location, environmental factors and the tumour cells themselves influence the cells within the TME. Immune cells can destroy tumour cells and are associated with better patient prognosis and response to therapy; however, immune cells are highly plastic and easily influenced to instead promote tumour growth. The interaction between local immune cells and the microbiome can lead to progression or regression of intestinal tumours. In this chapter, we will discuss how tumour development and progression can influence, and be influenced by, the microenvironment surrounding it, focusing on immune and fibroblastic cells, and the intestinal microbiota, particularly in the context of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AJCC:

American Joint Committee on Cancer

APC:

Adenomatous polyposis coli

BLIMP-1:

B lymphocyte-induced maturation protein 1

B-RAF:

Rapidly accelerated fibrosarcoma

BTF:

Bacteroides fragilis toxin

CAF:

Cancer-associated fibroblast

CCL:

C-C motif chemokine ligand

CCR:

C-C motif chemokine receptor

CD:

Cluster of differentiation

CIN:

Chromosomal instability

CMS:

Consensus molecular subtypes

CRC:

Colorectal cancer

CTLA-4:

Cytotoxic T lymphocyte-associated antigen 4

CXCR2:

C-X-C chemokine receptor 2

DC:

Dendritic cell

dMMR:

Mismatch repair deficient

DFS:

Disease-free survival

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

FADa:

Adhesin A

FAP:

Fibroblast activation protein

FOXP3:

Forkhead box P3

GEF:

Guanine nucleotide exchange factor

GLUT1:

Glucose transporter 1

IFNγ:

Interferon gamma

IL-:

Interleukin

iNOS:

Inducible nitric oxide synthase

KRAS:

Kirsten rat sarcoma viral oncogene homolog

LCRC:

Left-sided colorectal cancer

MHC:

Major histocompatibility complex

MMP:

Matrix metalloprotease

MMR:

Mismatch repair

MSI:

Microsatellite instability

NK:

Natural killer

OS:

Overall survival

p53:

Tumour protein 53

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

PIK3CA:

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

RCRC:

Right-sided colorectal cancer

ROS:

Reactive oxygen species

SCFA:

Short-chain fatty acids

TAM:

Tumour-associated macrophages

TAN:

Tumour-associated neutrophil

TCR:

T-cell receptor

TGFα:

Transforming growth factor alpha

TGFβ:

Transforming growth factor beta

TIAM1:

T-lymphoma invasion and metastasis-inducing protein 1

TIGIT:

T-cell immunoreceptor with Ig and ITIM domains

TME:

Tumour microenvironment

TNM:

Tumour node metastasis

Treg:

Regulatory T cell

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

αSMA:

Alpha smooth muscle actin

References

  1. Esterházy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR, Lockhart A, ElJalby M, Faria AMC, Mucida D (2019) Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569(7754):126–130. https://doi.org/10.1038/s41586-019-1125-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schofield PF, Haboubi NY, Martin DF (1993) The small intestine: normal structure and function. In: Highlights in coloproctology. Springer London, London, pp 1–5. https://doi.org/10.1007/978-1-4471-3456-5_1

    Chapter  Google Scholar 

  3. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD (2016) Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351(6275):858–863. https://doi.org/10.1126/science.aac5560

    Article  CAS  PubMed  Google Scholar 

  5. Bufill JA (1990) Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med 113(10):779–788

    Article  CAS  PubMed  Google Scholar 

  6. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E, Vadivelu J, Roslani AC, Malik AA, Wanyiri JW, Goh KL, Thevambiga I, Fu K, Wan F, Llosa N, Housseau F, Romans K, Wu X, McAllister FM, Wu S, Vogelstein B, Kinzler KW, Pardoll DM, Sears CL (2014) Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 111(51):18321–18326. https://doi.org/10.1073/pnas.1406199111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manne U, Shanmugam C, Katkoori VR, Bumpers HL, Grizzle WE (2010) Development and progression of colorectal neoplasia. Cancer Biomark (1–6):235–265. https://doi.org/10.3233/CBM-2011-0160

    Article  Google Scholar 

  8. Compton CC (2003) Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol 16(4):376–388. https://doi.org/10.1097/01.mp.0000062859.46942.93

    Article  PubMed  Google Scholar 

  9. Dotan E, Cohen SJ (2011) Challenges in the management of stage II colon cancer. Semin Oncol 38(4):511–520. https://doi.org/10.1053/j.seminoncol.2011.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gunawardene A, Desmond B, Shekouh A, Larsen P, Dennett E (2018) Disease recurrence following surgery for colorectal cancer: five-year follow-up. N Z Med J 131(1469):51–58

    PubMed  Google Scholar 

  11. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Borger E, Hartmann A, Geppert C, Kolwelter J, Merkel S, Grutzmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Leonard D, Remue C, Wang JY, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson EK, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Fredriksen T, Buttard B, Angelova M, Vasaturo A, Maby P, Church SE, Angell HK, Lafontaine L, Bruni D, El Sissy C, Haicheur N, Kirilovsky A, Berger A, Lagorce C, Meyers JP, Paustian C, Feng Z, Ballesteros-Merino C, Dijkstra J, van de Water C, van Lent-van Vliet S, Knijn N, Musina AM, Scripcariu DV, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Torigoe T, Sato N, Furuhata T, Takemasa I, Itoh K, Patel PS, Vora HH, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Zhang G, Kawakami Y, Marincola FM, Ascierto PA, Sargent DJ, Fox BA, Galon J (2018) International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139. https://doi.org/10.1016/s0140-6736(18)30789-x

    Article  PubMed  Google Scholar 

  12. Hatzaras I, Palesty JA, Abir F, Sullivan P, Kozol RA, Dudrick SJ, Longo WE (2007) Small-bowel tumors: epidemiologic and clinical characteristics of 1260 cases from the connecticut tumor registry. Arch Surg 142(3):229–235. https://doi.org/10.1001/archsurg.142.3.229

    Article  PubMed  Google Scholar 

  13. Schottenfeld D, Beebe-Dimmer JL, Vigneau FD (2009) The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol 19(1):58–69. https://doi.org/10.1016/j.annepidem.2008.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neugut A.I., Marvin M.R., J.A. C (2001) Adenocarcinoma of the small bowel. In: JA HRM (ed) Surgical treatment: evidence-based and problem-oriented. Zuckschwerdt-Verlag, Munich

    Google Scholar 

  15. Pan SY, Morrison H (2011) Epidemiology of cancer of the small intestine. World J Gastrointest Oncol 3(3):33–42. https://doi.org/10.4251/wjgo.v3.i3.33

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mundade R, Imperiale TF, Prabhu L, Loehrer PJ, Lu T (2014) Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience 1(6):400–406. https://doi.org/10.18632/oncoscience.59

    Article  PubMed  PubMed Central  Google Scholar 

  17. Axelrad JE, Lichtiger S, Yajnik V (2016) Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J Gastroenterol 22(20):4794–4801. https://doi.org/10.3748/wjg.v22.i20.4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Domingo E, Camps C, Kaisaki PJ, Parsons MJ, Mouradov D, Pentony MM, Makino S, Palmieri M, Ward RL, Hawkins NJ, Gibbs P, Askautrud H, Oukrif D, Wang H, Wood J, Tomlinson E, Bark Y, Kaur K, Johnstone EC, Palles C, Church DN, Novelli M, Danielsen HE, Sherlock J, Kerr D, Kerr R, Sieber O, Taylor JC, Tomlinson I (2018) Mutation burden and other molecular markers of prognosis in colorectal cancer treated with curative intent: results from the QUASAR 2 clinical trial and an Australian community-based series. Lancet Gastroenterol Hepatol 3(9):635–643. https://doi.org/10.1016/s2468-1253(18)30117-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4(14)

    Google Scholar 

  20. Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y, Zhang H (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37(1):173–187. https://doi.org/10.1007/s10555-017-9726-5

    Article  CAS  PubMed  Google Scholar 

  21. Armaghany T, Wilson JD, Chu Q, Mills G (2012) Genetic alterations in colorectal cancer. Gastrointest Cancer Res 5(1):19–27

    PubMed  PubMed Central  Google Scholar 

  22. Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072. https://doi.org/10.1053/j.gastro.2009.12.065

    Article  CAS  PubMed  Google Scholar 

  23. Deng W, Tsao SW, Kwok YK, Wong E, Huang XR, Liu S, Tsang CM, Ngan HYS, Cheung ANY, Lan HY, Guan X-Y, Cheung ALM (2008) Transforming growth factor β1 promotes chromosomal instability in human papillomavirus 16 E6E7–infected cervical epithelial cells. Cancer Res 68(17):7200–7209. https://doi.org/10.1158/0008-5472.Can-07-6569

    Article  CAS  PubMed  Google Scholar 

  24. Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T (2017) Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 8(67):112103–112115. https://doi.org/10.18632/oncotarget.22783

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macri E, Fornasarig M, Boiocchi M (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154(6):1805–1813. https://doi.org/10.1016/s0002-9440(10)65436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smyrk TC, Watson P, Kaul K, Lynch HT (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91(12):2417–2422

    Article  CAS  PubMed  Google Scholar 

  27. Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd C-J, DeNobile J, Soballe P, Simon R, Wright G, Lynch P, Patterson S, Lynch H, Gallinger S, Buchbinder A, Gordon G, Hawk E, Kirsch IR (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev 12(8):755–762

    CAS  Google Scholar 

  28. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa E, Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356. https://doi.org/10.1038/nm.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T, Grabe N, von Knebel Doeberitz M, Kloor M (2008) High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer 99(11):1867–1873. https://doi.org/10.1038/sj.bjc.6604756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, Honda H, Yamada Y, Ishioka C (2018) Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 9(27):18698–18711. https://doi.org/10.18632/oncotarget.24617

    Article  PubMed  PubMed Central  Google Scholar 

  31. Troiani T, Napolitano S, Della Corte CM, Martini G, Martinelli E, Morgillo F, Ciardiello F (2016) Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO Open 1(5):e000088. https://doi.org/10.1136/esmoopen-2016-000088

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schatoff EM, Leach BI, Dow LE (2017) Wnt Signaling and colorectal cancer. Curr Colorectal Cancer Rep 13(2):101–110. https://doi.org/10.1007/s11888-017-0354-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. https://doi.org/10.1038/nature11252

    Article  CAS  Google Scholar 

  34. Sun X, Liu S, Wang D, Zhang Y, Li W, Guo Y, Zhang H, Suo J (2017) Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling. Oncotarget 8(9):15168–15181. https://doi.org/10.18632/oncotarget.14834

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kosmidis C, Sapalidis K, Koletsa T, Kosmidou M, Efthimiadis C, Anthimidis G, Varsamis N, Michalopoulos N, Koulouris C, Atmatzidis S, Liavas L, Strati T-M, Koimtzis G, Tsakalidis A, Mantalovas S, Zarampouka K, Florou M, Giannakidis DE, Georgakoudi E, Baka S, Zarogoulidis P, Man Y-G, Kesisoglou I (2018) Interferon-γ and colorectal cancer: an up-to date. J Cancer 9(2):232–238. https://doi.org/10.7150/jca.22962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264. https://doi.org/10.1016/j.semcancer.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  37. Wang B, Zhang W, Jankovic V, Golubov J, Poon P, Oswald EM, Gurer C, Wei J, Ramos I, Wu Q, Waite J, Ni M, Adler C, Wei Y, Macdonald L, Rowlands T, Brydges S, Siao J, Poueymirou W, MacDonald D, Yancopoulos GD, Sleeman MA, Murphy AJ, Skokos D (2018) Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T cell dysfunction and maintain memory phenotype. Sci Immunol 3(29). https://doi.org/10.1126/sciimmunol.aat7061

    Article  PubMed  Google Scholar 

  38. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M, Felsher DW (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science (New York, NY) 352(6282):227–231. https://doi.org/10.1126/science.aac9935

    Article  CAS  Google Scholar 

  40. He W-L, Weng X-T, Wang J-L, Lin Y-K, Liu T-W, Zhou Q-Y, Hu Y, Pan Y, Chen X-L (2018) Association between c-Myc and colorectal cancer prognosis: a meta-analysis. Front Physiol 9(1549). https://doi.org/10.3389/fphys.2018.01549

  41. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559. https://doi.org/10.1126/science.1174229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toda K, Kawada K, Iwamoto M, Inamoto S, Sasazuki T, Shirasawa S, Hasegawa S, Sakai Y (2016) Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia (New York, NY) 18(11):654–665. https://doi.org/10.1016/j.neo.2016.09.004

    Article  CAS  Google Scholar 

  43. Leman JKH, Sandford SK, Rhodes JL, Kemp RA (2018) Multiparametric analysis of colorectal cancer immune responses. World J Gastroenterol 24(27):2995–3005. https://doi.org/10.3748/wjg.v24.i27.2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galon J., Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc P. H., Trajanoski Z, Fridman W.H., F. P (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313 (5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  45. Ward-Hartstonge KA, McCall JL, McCulloch TR, Kamps AK, Girardin A, Cretney E, Munro FM, Kemp RA (2017) Inclusion of BLIMP-1+ effector regulatory T cells improves the Immunoscore in a cohort of New Zealand colorectal cancer patients: a pilot study. Cancer Immunol Immunother 66(4):515–522. https://doi.org/10.1007/s00262-016-1951-1

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt A, Oberle N, Krammer PH (2012) Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 3:51–51. https://doi.org/10.3389/fimmu.2012.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192. https://doi.org/10.1200/jco.2008.18.7229

    Article  PubMed  Google Scholar 

  48. Hu G, Li Za WS (2017) Tumor-infiltrating FoxP3(+) Tregs predict favorable outcome in colorectal cancer patients: a meta-analysis. Oncotarget 8(43):75361–75371. https://doi.org/10.18632/oncotarget.17722

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, Hirakawa K, Ohira M (2017) The prognostic significance of the tumor-infiltrating programmed cell death-1(+) to CD8(+) lymphocyte ratio in patients with colorectal cancer. Anticancer Res 37(8):4165–4172. https://doi.org/10.21873/anticanres.11804

    Article  CAS  PubMed  Google Scholar 

  50. Arora SP, Mahalingam D (2018) Immunotherapy in colorectal cancer: for the select few or all? J Gastroint Oncol 9(1):170–179. https://doi.org/10.21037/jgo.2017.06.10

    Article  Google Scholar 

  51. Forssell J, Öberg Å, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13(5):1472–1479. https://doi.org/10.1158/1078-0432.Ccr-06-2073

    Article  CAS  PubMed  Google Scholar 

  52. Sugita J, Ohtani H, Mizoi T, Saito K, Shiiba K, Sasaki I, Matsuno S, Yagita H, Miyazawa M, Nagura H (2002) Close association between Fas ligand (FasL; CD95L)-positive tumor-associated macrophages and apoptotic cancer cells along invasive margin of colorectal carcinoma: a proposal on tumor-host interactions. Jpn J Cancer Res 93(3):320–328. https://doi.org/10.1111/j.1349-7006.2002.tb02175.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mantovani A (2014) Macrophages, Neutrophils, and Cancer: A Double Edged Sword. New J Sci 2014:14. https://doi.org/10.1155/2014/271940

    Article  CAS  Google Scholar 

  54. Koelzer VH, Canonica K, Dawson H, Sokol L, Karamitopoulou-Diamantis E, Lugli A, Zlobec I (2016) Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. Oncoimmunology 5(4):e1106677. https://doi.org/10.1080/2162402x.2015.1106677

    Article  PubMed  Google Scholar 

  55. Norton SE, Dunn ET, McCall JL, Munro F, Kemp RA (2016) Gut macrophage phenotype is dependent on the tumor microenvironment in colorectal cancer. Clin Transl Immunol 5(4):e76. https://doi.org/10.1038/cti.2016.21

    Article  CAS  Google Scholar 

  56. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. https://doi.org/10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, Sagi I, Varol C (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213(11):2315–2331. https://doi.org/10.1084/jem.20151193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Illemann M, Bird N, Majeed A, Sehested M, Laerum OD, Lund LR, Danø K, Nielsen BS (2006) MMP-9 is differentially expressed in primary human colorectal adenocarcinomas and their metastases. Mol Cancer Res 4(5):293–302. https://doi.org/10.1158/1541-7786.Mcr-06-0003

    Article  CAS  PubMed  Google Scholar 

  59. Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y (2019) The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci 20(3). https://doi.org/10.3390/ijms20030529

    Article  CAS  PubMed Central  Google Scholar 

  60. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grecian R, Whyte MKB, Walmsley SR (2018) The role of neutrophils in cancer. Br Med Bull 128(1):5–14. https://doi.org/10.1093/bmb/ldy029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garcea G, Ladwa N, Neal CP, Metcalfe MS, Dennison AR, Berry DP (2011) Preoperative neutrophil-to-lymphocyte ratio (NLR) is associated with reduced disease-free survival following curative resection of pancreatic adenocarcinoma. World J Surg 35(4):868–872. https://doi.org/10.1007/s00268-011-0984-z

    Article  CAS  PubMed  Google Scholar 

  63. Sharaiha RZ, Halazun KJ, Mirza F, Port JL, Lee PC, Neugut AI, Altorki NK, Abrams JA (2011) Elevated preoperative neutrophil:lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann Surg Oncol 18(12):3362–3369. https://doi.org/10.1245/s10434-011-1754-8

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tomita M, Shimizu T, Ayabe T, Yonei A, Onitsuka T (2011) Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res 31(9):2995–2998

    PubMed  Google Scholar 

  65. Li H, Zhao Y, Zheng F (2019) Prognostic significance of elevated preoperative neutrophil-to-lymphocyte ratio for patients with colorectal cancer undergoing curative surgery: a meta-analysis. Medicine (Baltimore) 98(3):e14126. https://doi.org/10.1097/md.0000000000014126

    Article  Google Scholar 

  66. Berry RS, Xiong MJ, Greenbaum A, Mortaji P, Nofchissey RA, Schultz F, Martinez C, Luo L, Morris KT, Hanson JA (2017) High levels of tumor-associated neutrophils are associated with improved overall survival in patients with stage II colorectal cancer. PLoS One 12(12):e0188799. https://doi.org/10.1371/journal.pone.0188799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inamoto S, Itatani Y, Yamamoto T, Minamiguchi S, Hirai H, Iwamoto M, Hasegawa S, Taketo MM, Sakai Y, Kawada K (2016) Loss of SMAD4 promotes colorectal cancer progression by accumulation of myeloid-derived suppressor cells through the CCL15-CCR1 chemokine Axis. Clin Cancer Res 22(2):492–501. https://doi.org/10.1158/1078-0432.Ccr-15-0726

    Article  CAS  PubMed  Google Scholar 

  68. Itatani Y, Kawada K, Fujishita T, Kakizaki F, Hirai H, Matsumoto T, Iwamoto M, Inamoto S, Hatano E, Hasegawa S, Maekawa T, Uemoto S, Sakai Y, Taketo MM (2013) Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. Gastroenterology 145(5):1064–1075.e1011. https://doi.org/10.1053/j.gastro.2013.07.033

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto T, Kawada K, Itatani Y, Inamoto S, Okamura R, Iwamoto M, Miyamoto E, Chen-Yoshikawa TF, Hirai H, Hasegawa S, Date H, Taketo MM, Sakai Y (2017) Loss of SMAD4 promotes lung metastasis of colorectal cancer by accumulation of CCR1+ tumor-associated neutrophils through CCL15-CCR1 Axis. Clin Cancer Res 23(3):833–844. https://doi.org/10.1158/1078-0432.Ccr-16-0520

    Article  CAS  PubMed  Google Scholar 

  70. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND (2019) The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol 40(2):142–158. https://doi.org/10.1016/j.it.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  71. Pasero C, Gravis G, Granjeaud S, Guerin M, Thomassin-Piana J, Rocchi P, Salem N, Walz J, Moretta A, Olive D (2015) Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 6(16):14360–14373. https://doi.org/10.18632/oncotarget.3965

    Article  PubMed  PubMed Central  Google Scholar 

  72. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328. https://doi.org/10.1002/(sici)1097-0142(19970615)79:12<2320::aid-cncr5>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  73. Sconocchia G, Eppenberger S, Spagnoli GC, Tornillo L, Droeser R, Caratelli S, Ferrelli F, Coppola A, Arriga R, Lauro D, Iezzi G, Terracciano L, Ferrone S (2014) NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncoimmunology 3(8):e952197. https://doi.org/10.4161/21624011.2014.952197

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  75. Krijgsman D, de Vries NL, Skovbo A, Andersen MN, Swets M, Bastiaannet E, Vahrmeijer AL, van de Velde CJH, Heemskerk MHM, Hokland M, Kuppen PJK (2019) Characterization of circulating T-, NK-, and NKT cell subsets in patients with colorectal cancer: the peripheral blood immune cell profile. Cancer Immunol Immunother 68(6):1011–1024. https://doi.org/10.1007/s00262-019-02343-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alderdice M, Dunne PD, Cole AJ, O’Reilly PG, McArt DG, Bingham V, Fuchs MA, McQuaid S, Loughrey MB, Murray GI, Samuel LM, Lawler M, Wilson RH, Salto-Tellez M, Coyle VM (2017) Natural killer-like signature observed post therapy in locally advanced rectal cancer is a determinant of pathological response and improved survival. Mod Pathol 30(9):1287–1298. https://doi.org/10.1038/modpathol.2017.47

    Article  CAS  PubMed  Google Scholar 

  77. Li L, Li W, Wang C, Yan X, Wang Y, Niu C, Zhang X, Li M, Tian H, Yao C, Jin H, Han F, Xu D, Han W, Li D, Cui J (2018) Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy 20(1):134–148. https://doi.org/10.1016/j.jcyt.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  78. Chretien AS, Le Roy A, Vey N, Prebet T, Blaise D, Fauriat C, Olive D (2014) Cancer-induced alterations of NK-mediated target recognition: current and investigational pharmacological strategies aiming at restoring NK-mediated anti-tumor activity. Front Immunol 5:122. https://doi.org/10.3389/fimmu.2014.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Narai S, Watanabe M, Hasegawa H, Nishibori H, Endo T, Kubota T, Kitajima M (2002) Significance of transforming growth factor beta1 as a new tumor marker for colorectal cancer. Int J Cancer 97(4):508–511

    Article  CAS  PubMed  Google Scholar 

  80. Kruse PH, Matta J, Ugolini S, Vivier E (2014) Natural cytotoxicity receptors and their ligands. Immunol Cell Biol 92(3):221–229. https://doi.org/10.1038/icb.2013.98

    Article  CAS  PubMed  Google Scholar 

  81. Bruno A, Bassani B, D’Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A (2018) Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 32(10):5365–5377. https://doi.org/10.1096/fj.201701103R

    Article  CAS  PubMed  Google Scholar 

  82. Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicine 5(2):34. https://doi.org/10.3390/biomedicines5020034

    Article  CAS  Google Scholar 

  83. Lanuza PM, Vigueras A, Olivan S, Prats AC, Costas S, Llamazares G, Sanchez-Martinez D, Ayuso JM, Fernandez L, Ochoa I, Pardo J (2018) Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. Oncoimmunology 7(4):e1395123. https://doi.org/10.1080/2162402x.2017.1395123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andre P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Blery M, Bonnafous C, Gauthier L, Morel A, Rossi B, Remark R, Breso V, Bonnet E, Habif G, Guia S, Lalanne AI, Hoffmann C, Lantz O, Fayette J, Boyer-Chammard A, Zerbib R, Dodion P, Ghadially H, Jure-Kunkel M, Morel Y, Herbst R, Narni-Mancinelli E, Cohen RB, Vivier E (2018) Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175(7):1731–1743.e1713. https://doi.org/10.1016/j.cell.2018.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O (2015) Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol 5:63–63. https://doi.org/10.3389/fonc.2015.00063

    Article  PubMed  PubMed Central  Google Scholar 

  86. Janakiram NB, Rao CV (2014) The role of inflammation in colon cancer. In: Aggarwal BB, Sung B, Gupta SC (eds) Inflammation and cancer. Springer Basel, Basel, pp 25–52. https://doi.org/10.1007/978-3-0348-0837-8_2

    Chapter  Google Scholar 

  87. Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, Mesker W, ten Dijke P, Sier CFM (2012) Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 33:97. https://doi.org/10.1038/onc.2012.536

    Article  CAS  PubMed  Google Scholar 

  88. Mrazek AA, Carmical JR, Wood TG, Hellmich MR, Eltorky M, Bohanon FJ, Chao C (2014) Colorectal cancer-associated fibroblasts are genotypically distinct. Curr Cancer Ther Rev 10(2):97–218. https://doi.org/10.2174/157339471002141124123103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Adegboyega PA, Mifflin RC, DiMari JF, Saada JI, Powell DW (2002) Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch Pathol Lab Med 126(7):829–836. https://doi.org/10.1043/0003-9985(2002)126<0829:Isomin>2.0.Co;2

    Article  PubMed  Google Scholar 

  90. Nishishita R, Morohashi S, Seino H, Wu Y, Yoshizawa T, Haga T, Saito K, Hakamada K, Fukuda S, Kijima H (2018) Expression of cancer-associated fibroblast markers in advanced colorectal cancer. Oncol Lett 15(5):6195–6202. https://doi.org/10.3892/ol.2018.8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Norton SE, Ward-Hartstonge KA, Taylor ES, Kemp RA (2015) Immune cell interplay in colorectal cancer prognosis. World J Gastrointest Oncol 7(10):221–232. https://doi.org/10.4251/wjgo.v7.i10.221

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ziani L, Chouaib S, Thiery J (2018) Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol 9:414–414. https://doi.org/10.3389/fimmu.2018.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Izumi D, Toden S, Ureta E, Ishimoto T, Baba H, Goel A (2019) TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis 10(4):267. https://doi.org/10.1038/s41419-019-1493-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, Collard JG (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77(4):537–549

    Article  CAS  PubMed  Google Scholar 

  95. Kazanietz MG, Caloca MJ (2017) The Rac GTPase in cancer: from old concepts to new paradigms. Cancer Res 77(20):5445–5451. https://doi.org/10.1158/0008-5472.Can-17-1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Buongiorno P, Pethe VV, Charames GS, Esufali S, Bapat B (2008) Rac1 GTPase and the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance beta-catenin/TCF-dependent transcription in colorectal cancer cells. Mol Cancer 7:73–73. https://doi.org/10.1186/1476-4598-7-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, Hou Y (2018) Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 8(14):3932–3948. https://doi.org/10.7150/thno.25541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Higashino N, Koma Y-i, Hosono M, Takase N, Okamoto M, Kodaira H, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H (2019) Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Investig 99(6):777–792. https://doi.org/10.1038/s41374-018-0185-6

    Article  CAS  PubMed  Google Scholar 

  99. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354. https://doi.org/10.1074/jbc.M109.042671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X, Yuan L, Feng Y (2019) Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis 10(4):273. https://doi.org/10.1038/s41419-019-1435-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimao Y, Nabeshima K, Inoue T, Koono M (1999) Role of fibroblasts in HGF/SF-induced cohort migration of human colorectal carcinoma cells: fibroblasts stimulate migration associated with increased fibronectin production via upregulated TGF-beta1. Int J Cancer 82(3):449–458

    Article  CAS  PubMed  Google Scholar 

  102. Ahmadzadeh M, Rosenberg SA (2005) TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174(9):5215–5223. https://doi.org/10.4049/jimmunol.174.9.5215

    Article  CAS  PubMed  Google Scholar 

  103. Sanjabi S, Mosaheb MM, Flavell RA (2009) Opposing effects of TGF-beta and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31(1):131–144. https://doi.org/10.1016/j.immuni.2009.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H (2014) Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer 110(2):469–478. https://doi.org/10.1038/bjc.2013.748

    Article  CAS  PubMed  Google Scholar 

  105. Bendardaf R, Buhmeida A, Hilska M, Laato M, Syrjanen S, Syrjanen K, Collan Y, Pyrhonen S (2008) VEGF-1 expression in colorectal cancer is associated with disease localization, stage, and long-term disease-specific survival. Anticancer Res 28(6b):3865–3870

    PubMed  Google Scholar 

  106. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111. https://doi.org/10.1083/jcb.122.1.103

    Article  CAS  PubMed  Google Scholar 

  107. Henriksson ML, Edin S, Dahlin AM, Oldenborg P-A, Öberg Å, Van Guelpen B, Rutegård J, Stenling R, Palmqvist R (2011) Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178(3):1387–1394. https://doi.org/10.1016/j.ajpath.2010.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  108. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274(51):36505–36512. https://doi.org/10.1074/jbc.274.51.36505

    Article  CAS  PubMed  Google Scholar 

  109. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  110. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  111. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, Kalavagunta PK, Liao J, Jin L, Shang J, Li J (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7(1):9. https://doi.org/10.1186/s40168-019-0628-3

    Article  PubMed  PubMed Central  Google Scholar 

  112. Barrasa JI, Olmo N, Lizarbe MA, Turnay J (2013) Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 27(2):964–977. https://doi.org/10.1016/j.tiv.2012.12.020

    Article  CAS  PubMed  Google Scholar 

  113. Lee HY, Crawley S, Hokari R, Kwon S, Kim YS (2010) Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int J Oncol 36(4):941–953. https://doi.org/10.3892/ijo_00000573

    Article  CAS  PubMed  Google Scholar 

  114. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  116. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111(6):2247–2252. https://doi.org/10.1073/pnas.1322269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Buda A, Qualtrough D, Jepson MA, Martines D, Paraskeva C, Pignatelli M (2003) Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut 52(5):729–734. https://doi.org/10.1136/gut.52.5.729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clarke JM, Topping DL, Bird AR, Young GP, Cobiac L (2008) Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis 29(11):2190–2194. https://doi.org/10.1093/carcin/bgn192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zuo L, Lu M, Zhou Q, Wei W, Wang Y (2013) Butyrate suppresses proliferation and migration of RKO colon cancer cells though regulating endocan expression by MAPK signaling pathway. Food Chem Toxicol 62:892–900

    Article  CAS  PubMed  Google Scholar 

  120. Pećina-Slaus N (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 3(1):17–17. https://doi.org/10.1186/1475-2867-3-17

    Article  PubMed  PubMed Central  Google Scholar 

  121. Christou N, Perraud A, Blondy S, Jauberteau M-O, Battu S, Mathonnet M (2017) E-cadherin: a potential biomarker of colorectal cancer prognosis. Oncol Lett 13(6):4571–4576. https://doi.org/10.3892/ol.2017.6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Han YW (2015) Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 23:141–147. https://doi.org/10.1016/j.mib.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  123. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI (2017) Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 12(2):e0171602–e0171602. https://doi.org/10.1371/journal.pone.0171602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu S, Lim KC, Huang J, Saidi RF, Sears CL (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 95(25):14979–14984. https://doi.org/10.1073/pnas.95.25.14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklic K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2):344–355. https://doi.org/10.1016/j.immuni.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jahani-Sherafat S, Alebouyeh M, Moghim S, Ahmadi Amoli H, Ghasemian-Safaei H (2018) Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol Hepatol Bed Bench 11(2):101–109

    PubMed  PubMed Central  Google Scholar 

  128. Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, Keeney G, Lyke K, Ridlon J, White BA, French AJ, Thibodeau SN, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson X-M, Sung J, Blekhman R, Boardman L, Larson D, Nelson H, Chia N (2018) Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med 10(1):78. https://doi.org/10.1186/s13073-018-0586-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kakimi K, Karasaki T, Matsushita H, Sugie T (2017) Advances in personalized cancer immunotherapy. Breast Cancer 24(1):16–24. https://doi.org/10.1007/s12282-016-0688-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leman, J.K.H., Munoz-Erazo, L., Kemp, R.A. (2020). The Intestinal Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, vol 1226. Springer, Cham. https://doi.org/10.1007/978-3-030-36214-0_1

Download citation

Publish with us

Policies and ethics