Skip to main content

Soil and Crop Health Management for the Cultivation of Pigeon Pea: An Overview of Management Practices

  • Chapter
  • First Online:
Management of Fungal Pathogens in Pulses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Pigeon pea (Cajanus cajan L. Millsp.) is one of the leading pulses crops of India under the Leguminaceae family. It is grown as an annual and perennial crop under rainfed conditions, mostly in less fertile or marginal areas intercrop with cereals and oilseeds. The circumstances under which the crop is cultivated pose a major barrier for the crop, making it sensitive to abiotic and biotic stresses, and a key drawback in the maximum yield potential. Among the abiotic stresses, temperature, soil acidity, salinity, drought, waterlogging, etc. cause severe yield losses, and major biotic stresses include diseases like wilt, Phytophthora blight, Alternaria blight, etc. The crop is also susceptible to various parasitic nematodes, viz. Meloidogyne javanica, Heterodera cajani, Rotylenchus sp., etc. Pigeon pea has the specialty of biological nitrogen fixation (BNF) and efficiently establishes symbiosis with Bradyrhizobium spp. even though the crop is a promiscuous legume. This symbiosis provides more than 90% of nitrogen requirement for the crop depending on the conduciveness of the growing environment, variety of crop and type of soil. To be productive, the crop also requires neutral to slightly acidic soil conditions, and the potential yield is significantly reduced under extreme conditions of acidity, basicity or salinity, drought, etc. As the saying goes, “When the soil is deficient, the plants also are deficient and weakened, and they lose their defenses” (Charlotte Gerson). So, maintaining the soil health by supplying all the essential nutrients in the form of organic or inorganic manures is crucial for the crop to remain healthy and productive. Therefore, the efficient and improved practices of nutrient management like an application of cross-inoculants’ group-specific biofertilizers, enriched compost, liming of acid soils or gypsum application in alkaline soils can be practised for sustaining the soil health. Deep summer ploughing, soil solarization, biopesticides, etc. are some of the pathogen management practices for maintaining the health of the crop and, thus, reduction in yield losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adu-Gyamfi JJ, Ito O, Yoneyama T, Devi TG. Nitrogen management and biological nitrogen fixation in sorghum/pigeon pea intercropping on Alfisols of the semi-arid tropics. Soil Sci Plant Nutr. 1997;43:1061–6.

    Article  CAS  Google Scholar 

  • Ali MEK, Inanaga S, Sugimoto Y. Sources of resistance to Fusarium wilt of chickpea in Sudan. Phytopathol Mediterr. 2002;41:163–9.

    Google Scholar 

  • Agarwal SC, Tripathi AK. Efficacy of different intercropping systems on wilt and Phytophthora blight incidence and yield of pigeon pea. Indian J Pulses Res. 2003;16(1):71–72.

    Google Scholar 

  • Anand RC, Dogra BC. Physiological and biochemical characteristics of fast and slow growing Rhizobium sp., from pigeon pea (Cajanus cajan). J Appl Microbiol. 1991;70:197–202.

    CAS  Google Scholar 

  • Anand RC, Dogra RC. Comparative efficiency of Rhizobium/Bradyrhizobium sp. strains in nodulating Cajanus cajan in relation to characteristic metabolic enzyme activities. Biol Fertil Soils. 1997;24:283–7.

    Article  CAS  Google Scholar 

  • Anonymous. Punjab State Council for Science and Technology (A State Government Undertaking). Chandigarh (India). 2001.

    Google Scholar 

  • Anonymous. Annual report of AICRP on pigeon pea. Kanpur: Indian Institute of Pulses Research; 2010.

    Google Scholar 

  • Anonymous. Status of pigeon pea research in Karnataka. Bangalore: Published by Principal Scientist AICRP on Pigeon pea UAS, GKVK; 2012.

    Google Scholar 

  • Anonymous. Agriculture statistics at glance. Ministry of agriculture and farmer welfare. New Delhi: Government of India; 2015.

    Google Scholar 

  • Baker R, Drury R. Inoculum potential and soilborne pathogens: the essence of every model is within the frame. Phytopathology. 1981;71:363.

    Article  Google Scholar 

  • Bapat S, Shah AK. Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Can J Microbiol. 2000;46:125–32.

    Article  PubMed  CAS  Google Scholar 

  • Behera S, Rai AK, Rout R. Factor affecting growth of Phoma cajani causing stem canker in pigeonpea. Int J Curr Microbiol App Sci. 2017;6:2991–5.

    Article  CAS  Google Scholar 

  • Chalutz E, Wilson CL. Post harvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 1990;74:134–7.

    Article  Google Scholar 

  • Chaudhary B, Kumar S, Kushwaha SK. Bio-efficacy of Trichoderma species against pigeon pea wilt pathogen. J Appl Nat Sci. 2017;9:2327–31.

    Article  CAS  Google Scholar 

  • Chauhan YS, Saxena NP, Johansen C. Abiotic factors limiting chickpea and pigeon pea production. In: Sachan JN, editor. Proceedings of national symposium on new frontiers in pulses research and development. Kanpur: Directorate of Pulses Research; 1992. p. 111–23.

    Google Scholar 

  • Choudhary AK. Technological and extension yield gaps in pulses in Mandi district of Himachal Pradesh. Indian J Soil Conserv. 2013;41:88–97.

    Google Scholar 

  • Choudhary AK, Sultana R, Pratap A, Nadarajan N, Jha UC. Breeding for abiotic stresses in pigeon pea. J Food Leg. 2011;24:165–74.

    Google Scholar 

  • Choudhary AK, Pooniya V, Bana RS, Kumar A, Singh U. Mitigating pulse productivity constraints through phosphorus fertilization–a review. Agric Rev. 2014;35:314–9.

    Article  Google Scholar 

  • Choudhary AK. Selection criteria for low temperature tolerance in long-duration pigeonpea. In: Abstract published in the national symposium on legumes for ecological sustainability: emerging challenges and opportunity. Indian Institute of Pulses Research, Kanpur, 2007: pp. 266.

    Google Scholar 

  • Chaudhary RS, Patnaik US, Dass A. Efficacy of mulches in conserving monsoon of moisture for rabi crops. J Indian Soc Soil Sci. 2003;51(4):495–498.

    Google Scholar 

  • Dahal G, Neupane KR. Incidence and effect of sterility mosaic disease of pigeon pea in Nepal. Int Pigeon Newsl. 1991;13:23–4.

    Google Scholar 

  • Das SK, Avasthe RK, Singh R, Babu S. Biochar as carbon negative in carbon credit under changing climate. Curr Sci. 2014;107:1090–1.

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK. Rhizobia as a biocontrol agent against soil borne plant pathogenic fungi. Indian J Exp Biol. 2003;41:1160–4.

    PubMed  CAS  Google Scholar 

  • Devadason A, Subramanian S. Effects of biocontrol agents and plant products on Macrophomina phaseolina and colchicine content in Gloriosa superba. Plant Prot Sci. 2012;48:110–5.

    Article  Google Scholar 

  • Dubey RC, Kunar H, Pandey RR. Fungitoxic effect of neem extracts on growth and sclerotial survival of Macrophomina phaseolina in vitro. J Am Sci. 2009;5(5):17–24.

    Google Scholar 

  • Dwivedi RS, Dubey RC. Effect of volatile and non-volatile fraction of two medicinal plants on germination of Macrophomina phaseolina. Trans Br Mycol Soc. 1986;87:326–8.

    Article  Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A. Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol. 1993;138:157–63.

    Article  Google Scholar 

  • Food and Agriculture Organization. International Year of Pulses. 2016 https://en.wikipedia.org/wiki/International_Year_of_Pulses

  • Gaikwad BM, Kore SS. Bacterial leaf spot and stem canker of pigeon pea (Cajanus cajan) caused by Xanthomonas cajani. Indian J Mycol Plant Path. 1981;11:50–6.

    Google Scholar 

  • Gajera MS, Ahlawat RPS, Ardeshna RB. Effect of irrigation schedule, tillage depth and mulch on growth and yield of winter pigeon pea (Cajanus cajan). Indian J Agron. 1998;43:689–93.

    Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, et al. Assessing shifts in soil microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol. 2004;25:63–84.

    Article  Google Scholar 

  • Gupta V, Llewellyn R, McBeath T, Kroker S, Davoren B, McKay A, et al. Break crops for disease and nutrient management in intensive cereal management. In: Australian Agronomy Conference, Australian Society of Agronomy, Armidale, NSW. 2012. http://www.regional.org.au/au/asa/2012/nutrition/7961_vadakattugupta.htm.2012.

  • Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI. Identification and characterization of salt- and thermotolerant Leucaena-nodulating Rhizobium strains. Biol Fertil Soils. 1998;27:335–41.

    Article  CAS  Google Scholar 

  • Hemanth G, Kumar PKR, Niharika PS, Kolli SK. Fungicides effect on soil micro flora in Tekkali Mandal, Srikakulam (Dist.). Int J Res Dev Pharm Life Sci. 2016;5:2245–50.

    CAS  Google Scholar 

  • Hussain AI, Anwar F, Sherazi STH, Przybylski R. Chemical composition. Antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008;108:986–95.

    Article  PubMed  CAS  Google Scholar 

  • Jalander V, Gachande BD. Seed borne mycoflora of different varieties of pigeon pea (Cajanus cajan (L.) Millsp.). Bioinfolet. 2011;8:167–168.

    Google Scholar 

  • Junjittakarna J, Pimratch S, Jogloy S, Htoon W, Singkham N, Vorasoot N, Toomsan B, Holbrook CC, Patanothai A. Nutrient uptake of peanut genotypes under different water regimes. Int J Plant Prod. 2013;7:1735–6814.

    Google Scholar 

  • Kandasamy OS. Effect of herbicide with and without manual weeding on weed and yield of rainfed pigeonpea (Cajanus cajan). Leg Res. 1999;22:172–6.

    Google Scholar 

  • Kannaiyan J, Nene YL, Reddy MV, Ryan JG, Raju TN. Prevalence of pigeon pea diseases and associated crop losses in Asia, Africa and the Americas. Trop Pest Manag. 1984;30:62–71.

    Article  Google Scholar 

  • Kanwar JS, Rego TJ. Fertilizer use and watershed management in rainfed areas for increasing crop production. Fertilizer News. 1983.

    Google Scholar 

  • Kaur R, Raj R, Das TK, Shekhawat K, Singh R, Choudhary AK. Weed management in pigeonpea-based cropping systems. Indian J Weed Sci. 2015;47:267–76.

    Google Scholar 

  • Kawamitsu Y, Driscoll T, Boyer JS. Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiol. 2000;41:344–53.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AC, Papendick RI. Microbial characteristics of soil quality. J Soil Water Conserv. 1995;50:243–8.

    Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem. 2004;36:1229–44.

    Article  CAS  Google Scholar 

  • Khadse RR, Giri GK, Raut S, Bhoye BB. In vitro efficacy of fungicides and bioagents against wilt of pigeon pea caused by Neocosmospora vasinfecta. Sci Int. 2015;3(3):82–4. https://doi.org/10.17311/sciintl.

    Article  CAS  Google Scholar 

  • Kuhad MS, Nandwal AS, Kundu BS. Physiological responses of pigeon pea (Cajanus cajan L.) genotypes to water stress. Indian J Plant Physiol. 1989;32:212–6.

    Google Scholar 

  • Kumar U, Kushwaha HS. Studies on nutrient management in pigeon pea (Cajanus cajan (L) Millsp) based intercropping system of urd bean, sesame and mung bean. J Pharmacogn Phytochem. 2018;7:490–4.

    CAS  Google Scholar 

  • Kumar ATS, Rana KS. Effect of cropping systems, moisture conservation practices and fertility levels on growth and yield of pigeon pea and mungbean in intercropping system. Ann Agric Res New Ser. 2007;28:63–7.

    Google Scholar 

  • Kumar Rao JVDK, Dart PJ. Nodulation, nitrogen fixation and nitrogen uptake in pigeon pea (Cajanus cajan (L.) Millsp) of different maturity groups. Plant Soil. 1987;99:255.

    Article  Google Scholar 

  • Kumar A, Suri VK, Choudhary AK. Influence of inorganic phosphorus, VAM fungi and irrigation regimes on crop productivity and phosphorus transformations in okra (Abelmoschus esculentus L.)–pea (Pisum sativum L.) cropping system in an acid Alfisol. Commun Soil Sci Plant Anal. 2014;45:953–67.

    Article  CAS  Google Scholar 

  • Kuykendall LD, Hashem FM, Dadson RB, Elkan GH. Nitrogen fixation. In: Lederberg J, editor. Encyclopedia of microbiology, vol. 3. 2nd ed. San Diego, CA: Academic Press; 2000. p. 392–406.

    Google Scholar 

  • La Favre JS, Focht DD. Comparison of N2 fixation and yields in Cajanus cajan between hydrogenase-positive and hydrogenase-negative rhizobia by in situ acetylene reduction assays and direct 15N partitioning. Plant Physiol. 1983;72:971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodha S. Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f. sp. cumini and Macrophomina phaseolina in arid soils. Crop Prot. 1995;14:215–9.

    Article  Google Scholar 

  • Mandal SC. Introduction and historical overview, in acid soils of India. In: Mahapatra IC, Mandal SC, Misra C, Mitra GN, Panda N. (Eds). ICAR, New Delhi, India, 1997: pp. 3–24.

    Google Scholar 

  • Maheswari M, Sarkar B, Vanaja M, Srinivasarao M, Srinivasarao Ch, Venkateswarlu B, Sikka AK. Climate resilient crop varieties for sustainable food production under aberrant weather conditions. Technical Bulletin, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad. 2015. p. 47.

    Google Scholar 

  • Mandeel Q, Baker R. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology. 1991;81:462–9.

    Article  Google Scholar 

  • Maruti SAS, Sunkad G, Mahalinga D, Patil MG. Incidence of dry root rot of pigeon pea in north eastern Karnataka, India. Int J Curr Microbiol App Sci. 2017;6:1071–8.

    Article  Google Scholar 

  • Mayur D, Deshmukh VV. Effect of bio-agents and soil amendments on chickpea wilt caused by Fusarium oxysporum. Res Crops. 2003;4:141–3.

    Google Scholar 

  • Mclaughlin MJ, Malik KA, Memon KS, Adris M. The role of phosphorus in N fixation in upland crops. In: Phosphorus requirement for sustainable agriculture in Asia and Oceania. S.I.: IRRI; 1990.

    Google Scholar 

  • Meena MC, Dwivedi BS, Singh D, Sharma BM, Kumar K, Rana DS. Effect of integrated nutrient management on productivity and soil health in pigeon pea (Cajanus cajan)-wheat (Triticum aestivum) cropping system. Indian J Agron. 2012;57:333–7.

    CAS  Google Scholar 

  • Mhango WG, Snapp S, Kanyama Phiri Y. Biological nitrogen fixation and yield of pigeon peas and groundnut: quantifying response on smallholder farms in northern Malawi. Afr J Agric Res. 2017;12:1385–94.

    Article  Google Scholar 

  • Mihail JD, Alcorn SM. Effect of soil solarisation on Macrophomina phaseolina and Sclerotium rolfsii. Plant Dis. 1984;68:156–9.

    Article  Google Scholar 

  • Murthy SP, Sirsi M. Pharmacological studies on Melia azadirachta: Part I. Antibacterial, antifungal and antitubercular activity of neem oil and its fractions. Symp Utilization Indian Med PL, Lucknow. 1958. p. 55.

    Google Scholar 

  • Nambiar PTC, Rego TJ, Rao BS. Nitrate concentration and nitrate reductase activity in the leaves of three legumes and three cereals. Ann Appl Biol. 1988;112:547–53.

    Article  Google Scholar 

  • Nandhini DU, Vimalendran L, Latha KR, Sangamithra S, Kalaiyarasan V. A review on biological advantages of pigeonpea intercropping influenced by different cropping geometries. Int J Agric Sci Res. 2015;5:103–12.

    Google Scholar 

  • Natarajan M, Kannaiyan J, Willey RW, Nene YL. Studies on effects of cropping system on Fusarium wilt of pigeon pea. Field Crop Res. 1985;10:333–46.

    Article  Google Scholar 

  • Nene YL, Sheila VK, Sharma SB. A world list of chickpea (Cicer arietinum L.) and pigeon pea (Cajanus cajan (L.) Millsp.) pathogens. Legumes pathology progress report-7. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 1989;7:1–23.

    Google Scholar 

  • Nene YL, Sheila VK, Sharma SB. A world list of chickpea and pigeon pea pathogens. 5th ed. Patancheru: International Crops Research Institute for the Semi-Arid Tropics; 1996.

    Google Scholar 

  • Okiror MA. Genetics of resistance to Fusarium udum in pigeon pea (Cajanus cajan (L.) Millsp.). Indian J Genet Plant Breed. 2002;62:218–20.

    Google Scholar 

  • Pande S, Sharma M, Naga Mangla U, Ghosh R, Sundaresan G. Phytophthora blight of pigeon pea (Cajanus cajan (L.) Millsp.): an updating review of biology, pathogenicity and disease management. Crop Prot. 2011;30:951–7.

    Article  Google Scholar 

  • Pande S, Sharma M, Guvvala G. An updated review of biology, pathogenicity, epidemiology and management of wilt disease of pigeon pea (Cajanus cajan (L.) Millsp.). J Food Leg. 2013;26:1–14.

    Google Scholar 

  • Pandey G, Singh KP. Effect of organic amendments on soil microflora and nematode fauna with special reference to Meloidogyne incognita in chick pea. New Agric. 1990;1:65–70.

    Google Scholar 

  • Pankhurst CE, Ophel-Keller K, Doube BM, Gupta VVSR. Biodiversity of soil microbial communities in agricultural systems. Biodivers Conserv. 1996;5:197–209.

    Article  Google Scholar 

  • Papavizas GC, Lumsden RD. Biological control of soil borne fungal propagules. Annu Rev Phytopathol. 1980;18:389–413.

    Article  Google Scholar 

  • Patil AB, Padmani DR. Effect of integrated nutrient management on growth and yield of pigeon pea (Cajanus cajan L. Millsp.). Int J Agric Sci. 2007;3:49–51.

    Google Scholar 

  • Patil HM, Tuwar SS, Wani AG. Studies on integrated nutrient management for pigeonpea + pearlmillet intercropping system under dryland conditions. Int J Agric Sci. 2008;4:335–9.

    Google Scholar 

  • Patten CL, Glick BR. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68:3795–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pooniya V, Choudhary AK, Dass A, Bana RS, Rana KS, Rana DS, et al. Improved crop management practices for sustainable pulse production: an Indian perspective. Indian J Agric Sci. 2015;85:747–58.

    Google Scholar 

  • Poulain D, Al Mohammad H. Effects of boron deficiency and toxicity on faba bean (Vicia faba L.). Eur J Agron. 1995;4:127–34.

    Article  CAS  Google Scholar 

  • Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP. Effect of soil and seed application of Trichoderma harzianum on pigeon pea wilt caused by Fusarium udum under field conditions. Crop Prot. 2002;21:293–7.

    Article  Google Scholar 

  • Promila K, Kumar S. Effect of salinity on flowering and yield characters in pigeon pea. Indian J Plant Physiol. 1982;25:252–7.

    Google Scholar 

  • Purakayastha TJ, Pathak H, Savita K. Stability of biochar carbon – its implication on carbon sequestration and microbial activities in soil. In: Proc. 100th Indian science congress, part II, abstracts of oral presentation. University of Calcutta, Kolkata. 2013. pp. 287–288.

    Google Scholar 

  • Rahman MH, Kawai S, Alam S, Hoque S, Tanaka A, Ito M. Effect of soil compaction on plant growth in an Andisol. Jpn J Trop Agric. 1999;4:129–35.

    Google Scholar 

  • Rajasekhar L, Sain SK, Divya J. Evaluation of microbial consortium for plant health management of pigeon pea. Int J Plant Anim Environ Sci. 2016;6:107–13.

    Google Scholar 

  • Ramakrishna A, Gowda CLL, Johansen C. Management factors affecting legumes production in the Indo-Gangetic plain. In: Johansen C, Duxbury JM, Virmani SM, Gowda CLL, editors. Legumes in rice and wheat cropping systems of the Indo-Gangetic plain-constraints and opportunities. Patancheru: ICRISAT; 2000. p. 156–65.

    Google Scholar 

  • Rana DS, Dass A, Rajanna GA, Kaur R. Biotic and abiotic stress management in pulses. Indian J Agron. 2016;61:238–48.

    Google Scholar 

  • Reddy AA. Pulses production technology: status and way forward, review of agriculture, economic & political weekly. Rev Agric. 2009;44(52):73–80.

    Google Scholar 

  • Reddy AA, Reddy GP. Supply side constrains in production of pulses in India: a case study of lentil. Agric Econ Res Rev. 2010;23:129–36.

    Google Scholar 

  • Reddy MV, Sharma SB, Nene YL. Pigeon pea: disease management. In: Nene YL, Hall SD, Sheila VK, editors. The pigeon pea. Wallingford: CAB International; 1990. p. 303–48.

    Google Scholar 

  • Reddy MV, Raju TN, Sharma SB, Nene YL, McDonald D. Handbook of pigeon pea diseases. Information Bulletin no. 42. Patancheru: International Crops Research Institute for the Semi-Arid Tropics; 1993. p. 64.

    Google Scholar 

  • Reddy ASR, Babu JS, Reddy MCS, Khan MM, Rao MM. Integrated nutrient management in pigeon pea (Cajanus cajan L.). Int J Appl Biol Pharm Technol. 2011;2:462–70.

    Google Scholar 

  • Reddy BMR. Status of nematode problems an d research in Karnataka. In: Sharma SB (Ed.) Diagnosis of key nematode pests of chickpea and pigeon pea and their management: Proceedings of a Regional Training Course. ICRISAT, Patancheru, India Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 1997: pp. 87–91.

    Google Scholar 

  • Sarojini TS. Soil conditions and root diseases IX Neocosmospora vasinfecta Smith disease of Cajanus cajan. Rev Appl Mycol. 1955;34:727.

    Google Scholar 

  • Sasser JN, Freckman DW. A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW, editors. Vistas on nematology. Hyattsville: Society of Nematologists; 1987. p. 7–14.

    Google Scholar 

  • Saxena R, Reddy DDR. Crop losses in pigeon pea and mungbean by mungbean cyst nematode, Meloidogyne cajani. Indian J Nematol. 1987a;17:91–4.

    Google Scholar 

  • Saxena R, Reddy DDR. Crop losses in pigeon pea and mungbean by pigeon pea cyst nematode, Heterodera cajani. Indian J Nematol. 1987b;17:91–4.

    Google Scholar 

  • Saxena KB, Kumar RV, Rao PV. Pigeon pea nutrition and its improvement. J Crop Prod. 2002;5:227–60.

    Article  CAS  Google Scholar 

  • Shabala S, Newman I, Whittington J, Juswono U. Protoplast ion fluxes: their measurement and variation with time, position and osmoticum. Planta. 1998;204:146–52.

    Article  CAS  Google Scholar 

  • Sharma SB, McDonald D. Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum, and pearl millet and suggestions for future work. Crop Prot. 1990;9:453–8.

    Article  Google Scholar 

  • Sharma SB, Nene YL, Reddy MV, McDonald D. Effect of Heterodera cajani on biomass and grain yield of pigeon pea on Vertisol in pot and field experiments. Plant Pathol. 1993;42:163–7.

    Article  Google Scholar 

  • Sharma P, Shukla MK, Sammis TW, Adhikari P. Nitrate-nitrogen leaching from onion bed under furrow and drip irrigation systems. Appl Environ Soil Sci. 2012;2012:1–17. https://doi.org/10.1155/2012/650206.

    Article  CAS  Google Scholar 

  • Sharma RL, Mishra T, Bhagat R, Swarnkar V, Kumar K. Integrated disease management for pigeon pea wilt caused by Fusarium udum. Int J Chem Stud. 2018;6:2748–51.

    CAS  Google Scholar 

  • Sharma A, Nakul HT, Jelgeri BR, Surwenshi A. Effect of micronutrients on growth, yield and yield components in pigeon pea (Cajanus cajan L. Millsp.). Res J Agric Sci. 2010;1(2):142–144.

    Google Scholar 

  • Shukla UC, Gupta BL. Response to Mn application and evaluation of chemical extractants to determine available Mn in some arid brown soils of Haryana. J Indian Soc Soil Sci. 1975;23:357–60.

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I, Hayat S. Biocontrol of Heterodera cajani and Fusarium udum on pigeon pea using Glomus mosseae, Paecilomyces lilacinus and Pseudomonas fluorescens. Thai J Agric Sci. 1998;31:310–21.

    Google Scholar 

  • Sikora RA, Greco N. Nematode parasites of food legumes. In: Luc M, Sikora RA, Bridge J, editors. Plant parasitic nematodes in subtropical and tropical agriculture. Wallingford: CAB International; 1990. p. 181–235.

    Google Scholar 

  • Singh VP. Planting geometry in maize (Zea mays) and blackgram (Phaseolus mungo) intercropping system under rainfed low hill valley of Kumaon. Indian J Agron. 2000;45:274–8.

    Google Scholar 

  • Singh D, Choudhary AK. Screening of pigeonpea genotypes for tolerance to aluminium toxicity. Paper presented in the International conference on Grain Legumes: Quality Improvement, Value Addition and Trade organized by Indian Society of Pulses Research and Development at IIPR, Kanpur from Feb 14–16, 2009.

    Google Scholar 

  • Singh SB, Chhabra R, Abrol IP. Effect of soil sodicity on the yield and chemical composition of cowpea (Vigna sinensis L.) grown for fodder. Indian J Agric Sci. 1980;50:852–6.

    CAS  Google Scholar 

  • Singh Y, Gaur NS, Singh D, Singh D. Response of pigeon pea (Cajanus cajan) to NPK in western part of Uttar Pradesh. Ann Agric Res. 1997;15:495.

    Google Scholar 

  • Singh V, Pandey PC, Jain DK. A text book of botany angiosperms. Meerut: Rastogi Publication; 2004.

    Google Scholar 

  • Singh MV, Narwal RP, Bhupal RG, Patel KP, Sadana US. Changing scenario of micronutrient deficiencies in India during four decades and its impact on crop responses and nutritional health of human and animals. In: The proceedings of the international plant nutrition colloquium XVI. Department of Plant Sciences, UC Davis. 2009.

    Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, et al. The first draft of the pigeon pea genome sequence. J. Plant Biochem Biotechnol. 2012;21:98. https://doi.org/10.1007/s13562-011-0088-8.

    Article  PubMed  Google Scholar 

  • Singh AK, Meena MK, Bharati R, Gade RM. Effect of sulphur and zinc management on yield, nutrient uptake, changes in soil fertility and economics in rice (Oryza sativa) – lentil (Lens culinaris) cropping system. Indian J Agric Sci. 2013a;83:344–8.

    Google Scholar 

  • Singh AK, Rai VP, Chand R, Singh RP, Singh MN. Genetic diversity studies and identification of SSR markers associated with Fusarium wilt (Fusarium udum) resistance in cultivated pigeon pea (Cajanus cajan). J Genet. 2013b;92:273–80.

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Grover P, Kaur J, Singh I, Kaur J, Singh P, et al. Genetic variability of pigeon pea (Cajanus cajan (L.) Millsp.) for Waterlogging and salinity tolerance under in vitro and in vivo conditions. Am J Exp Agric. 2016;12:1–13.

    Google Scholar 

  • Singh S, Russell MB. Water use by a maize/pigeon pea intercrop on a deep Vertisol. In: Nene YL, Kumble V (Eds.) Proceedings of the International Workshop on Pigeon peas, ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Volume 1, Patancheru, A.P., India, 1981.

    Google Scholar 

  • Sinha MK, Prasad T. Deterioration of arhar seeds by Aspergillus flavus. Indian phytopathol. 1977;30(1):70–72.

    Google Scholar 

  • Smita KP, Rajeswari E, Alice D, Raguchander T. Assesment of vascular wilt and dry root rot of pigeon pea in Tamil Nadu. International J of Tropical Agri. 2015;33(3):2145–2151.

    Google Scholar 

  • Slattery JF, Pearce DJ, Slattery WJ. Effects of resident communities and soil type on the effective nodulation of pulse legumes. Soil Biol Biochem. 2004;36:1339–46.

    Article  CAS  Google Scholar 

  • Somashekar TN, Tiwari A, Wani SP, Tedia K. Economics of pigeon pea as influenced by method of planting and integrated nutrient management in pigeon pea. Int J Chem Stud. 2017;5:1404–6.

    Google Scholar 

  • Subba Rami Reddy A, Sateesh Babu J, Chandra Sekhar Reddy M, Mujeeb Khan MD, Murali Rao M. Integrated nutrient management in pigeon pea (Cajanus cajan). Int J Appl Bio Pharm Technol. 2011;2:467–70.

    Google Scholar 

  • Subbarao GV, Johansen C, Rao JVDKK, Jana MK. Salinity tolerance in F1 hybrids of pigeon pea and a tolerant wild relative. Crop Sci. 1990;30:785–8.

    Article  CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Rao JVDKK. Comparative salinity responses among pigeon pea genotypes and their wild relatives. Crop Sci. 1991;31:415–8.

    Article  Google Scholar 

  • Subramanian D. Studies on the control of fungal wilts of plants. Thesis submitted for the Degree of Doctor of Philosophy. University of Madras. 1956.

    Google Scholar 

  • Sultana N. Nutrition content and heavy metal contamination in some roadside soils and grasses of Dhaka City, Bangladesh. M. Sc. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2010.

    Google Scholar 

  • Sukhadia NM, Ramani BB, Modhwadia MM, Asodaria KB. Integrated weed management in pigeon pea (Cajanus cajan L. Millsp.). Gujarat Agric Univ Res J. 2000;25:1–4.

    CAS  Google Scholar 

  • Sulochana CB. Soil conditions and root diseases VI. Germination of conidia of Fusarium vasinfectum in micro-element amended soils. Proc Indian Acad Sci Sec B. 1952;36:229–33.

    Google Scholar 

  • Sultana R, Choudhary AK, Pal AK, Saxena KB, Prasad BD, Singh RG. Abiotic stresses in major pulses: current status and strategies. In: Gaur RK, Sharma P, editors. Approaches to plant stress and their management. New Delhi: Springer; 2014. p. 173–90.

    Chapter  Google Scholar 

  • Suri VK, Choudhary AK. Effect of VAM fungi and phosphorus application through STCR precision model on crop productivity, nutrient dynamics and soil fertility in soy- bean–wheat–soybean crop sequence in an acid Alfisol. Commun Soil Sci Plant Anal. 2013;44:2032–41.

    Article  CAS  Google Scholar 

  • Talnikar AS, Kadam GL, Karande DR, Jogdand PB. Integrated weed management in pigeon pea (Cajanus cajan (L.) Millsp.). Int J Agric Sci. 2008;4:363–70.

    Google Scholar 

  • Taurian T, Castro S, Fabra A. Physiological response of two peanut rhizobia strains to acid pH. Symbiosis. 1998;24:327–36.

    CAS  Google Scholar 

  • Taylor AG, Harman GE, Nielsen PA. Biological seed treatments using Trichoderma harzianum for horticultural crops. Hort Technol. 1994;4:105–9.

    Article  Google Scholar 

  • Tayyab AM, Qasim M, Azeem M, Ahmed N. Salt stress responses of pigeon pea (Cajanus cajan) on growth, yield and some biochemical attributes. Pak J Bot. 2016;48:1353–60.

    CAS  Google Scholar 

  • Tejera NA, Soussi M, Lluch C. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot. 2006;58:17–24.

    Article  CAS  Google Scholar 

  • Tucker CM. Pigeon pea anthracnose. Aust J Agric Res. 1927;34:589–96.

    Google Scholar 

  • Umesha C, Sridhara CJ, Kumarnaik AH, Shivarajkumar HS. Ways to bridge yield gaps and production problems in pigeon pea cropping systems. J Pharmacogn Phytochem. 2017;6:2651–7.

    Google Scholar 

  • Upadhyay RS, Rai B. Studies on antagonism between Fusarium udum Bulter and root region microflora of pigeon pea. Plant Soil. 1987;101:79–93.

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, et al. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res. 2007;104:123–9.

    Article  Google Scholar 

  • Verma CB, Lallu B, Yadav RS. Effect of boron and zinc application on growth and yield of pigeon pea. Indian J Pulses Res. 2004;17:149–51.

    Google Scholar 

  • Vishwa D, Chaudhary RG, Mishra S, Khan AA. Occurrence of pigeon pea wilt caused by Neocosmospora vasinfecta. Indian J Pulses Res. 2005;18:254–5.

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron. 2003;81:97–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to ICAR Research Complex for NEH Region, Nagaland Centre, Jharnapani, Medziphema, Nagaland 797 106 for the facilities and the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sangma, C.B.K. (2020). Soil and Crop Health Management for the Cultivation of Pigeon Pea: An Overview of Management Practices. In: Singh, B., Singh, G., Kumar, K., Nayak, S., Srinivasa, N. (eds) Management of Fungal Pathogens in Pulses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-35947-8_9

Download citation

Publish with us

Policies and ethics