Skip to main content

Exploration of Secondary Metabolites for Management of Chickpea Diseases

  • Chapter
  • First Online:
Management of Fungal Pathogens in Pulses

Part of the book series: Fungal Biology ((FUNGBIO))

  • 326 Accesses

Abstract

Among legumes chickpea accounts for 48% of the total pulse production in India and the fourth important legume crop in the world. The crop is widely attacked by soilborne pathogens resulting in severe yield loss throughout the globe. The use of chemical fungicides for controlling diseases is rarely successful due to the soilborne nature of pathogens. Therefore, biological control methods serve as an alternative strategy for controlling diseases. Pseudomonas sp. and Bacillus sp. are the two most important root-colonizing plant growth-promoting rhizobacteria (PGPR) and can elicit defense response in the plant. Biocontrol agents (BCA) mainly act through different mechanisms such as production of secondary metabolites, siderophores, HCN, and mycolytic enzymes (chitinases, β-1,3-glucanases, and proteases), competition for space and nutrition, enhancement of root and development of plant, inactivation of pathogen’s enzymes, and induction of induced systemic resistance (ISR) against various pests and diseases for management of plant diseases. Thus, a generalized strategy for the exploitation of secondary metabolites produced by biological control agents needs to be developed for integrated disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AitBarka E, Gognies S, Nowak J, Audran JC, Belarbi A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control. 2002;24:135–42.

    Article  Google Scholar 

  • Alstrom S. Characteristics of bacteria from oilseed rape concerning their biocontrol activity against Verticilliumdahliae. J Phytopathol. 2000;149:57–64.

    Article  Google Scholar 

  • Andrade G, De Leij FAAM, Lynch JM. Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscularmycorrhizae on pea. Lett Appl Microbiol. 1998;26:311–6.

    Article  Google Scholar 

  • Anonymous.Commodity profile of pulses – March 2015. Department of Agriculture and Co-operation, Ministry of Agriculture, Government of India; 2015.

    Google Scholar 

  • Arima K, Imanaka H, Kausaka M, Fukuda A, Tameera C. Pyrrolnitrin a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem. 1964;28:575–6.

    Article  CAS  Google Scholar 

  • Barazani O, Friedman J. Is IAA the major root growth factor secreted from plant growth mediated bacteria? J Chem Ecol. 1999;25:2397–407.

    Article  CAS  Google Scholar 

  • Barea JM, Navapro E, Montoya E. Production of plant growth regulators by rhizosphere phosphate solubilizing bacteria. J Appl Bacteriol. 1976;40:129–34.

    Article  PubMed  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56:326–38.

    Article  PubMed  CAS  Google Scholar 

  • Bender CL, Rangaswamy V, Loper JE. Polyketide production by plant-associated Pseudomonads. Annu Rev Phytopathol. 1999;37:175–96.

    Article  PubMed  CAS  Google Scholar 

  • Burkhead K, Geoghegan MJ. Antibiotics. In: Burkhead K, editor. Soil-borne Plant Pathogens. New York, NY: Macmillon; 1994.

    Google Scholar 

  • Cabello F, Jorrin JV, Tena M. Chitinase and β-1,3-glucanase activities in chickpea (Cicer arietinum). Induction of different isoenzymes in response to wounding ethephon. Physiol Plant. 1994;92:654–60.

    Article  CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66:447–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control. 1995;5:83–91.

    Article  Google Scholar 

  • Chet I, Inbar J. Biological control of fungal pathogens. Appl Biochem Biotechnol. 1994;48:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root colonialization by Phenazine-1-Carboxamide producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact. 2000;13:1340–5.

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol. 2005;71:1685–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbett JR. The Biochemical mode of action of pesticides. London: Academic Press; 1974. p. 330.

    Google Scholar 

  • Dave BP, Dube H. Detection and chemical characterisation of siderophores of rhizobacterial fluorescent pseudomonads. Indian Phytopathol. 2000;53:97–8.

    Google Scholar 

  • Defago G, Berling CH, Burger U, Hass D, Hahr G, Keel C, Voisard C, Wirthner PH, Wutrich B. Suppression of black root rot of tobacco by a Pseudomonas strain: potential applications and mechanisms. In: Hornby D, editor. Biological control of soil-borne plant pathogens. Oxfordshire: CAB International; 1990. p. 93–108.

    Google Scholar 

  • Defago G, Keel C. Pseudomonads as biocontrol agents of diseases caused by soil borne pathogens. In: HMT H, Lynch JM, editors. Benefits and risks of introducing biocontrol agents. Cambridge, UK: University Press; 1995.

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK. Rhizobia as biological control agent against soil-borne plant pathogenic fungi. Ind J Exp Biol. 2003;41:1160–4.

    CAS  Google Scholar 

  • Dowling DN, O’Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 1994;12:133–41.

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. Acyl – homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol. 2001;67:1198–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes MLM, Saad EB, Meira JA, Ramos LP, Mitchel DA, Kriegeir N. Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J Mol Catal B Enzym. 2007;44:8–13.

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I. Biological control of soilborne pathogens by a β-13 glucanase producing Pseudomonas cepacia. Soil Biol Biochem. 1993;25:1211–21.

    Article  CAS  Google Scholar 

  • Garbeva P, van Vean JA, van Elas JD. Assessment of the diversity and antagonism towards Rhizoctonia solaniAG3 of Pseudomonas spp. in soil from different agricultural regimes. FEMS Microbiol Ecol. 2004;47:51–64.

    Article  PubMed  CAS  Google Scholar 

  • Gehring PJ, Nolan RJ, Watanabe PG. Solvents, fumigants and related compounds. In: Hayes WJ, Laws ER, editors. Handbook of pesticide toxicology, vol. 2. San Diego, CA: Academic Press Inc.; 1993. p. 646–9.

    Google Scholar 

  • Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases. Plant Physiol. 1998;116:393–401.

    Article  PubMed Central  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR. Pigment diverse mutants of Pseudomonas sp.: inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant. 2000;43:563–9.

    Article  CAS  Google Scholar 

  • Gohain A, Sarma RK, Debnath R, Saikia J, Singh BP, et al. Phylogenetic affiliation and antimicrobial effects of endophytic actinobacteria associated with medicinal plants: prevalence of polyketide synthase type II in antimicrobial strains. Folia Microbiol. 2019;64(4):481–96.

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 2011;30:1070–8.

    Article  CAS  Google Scholar 

  • Gross H, Loper, JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 2009;26:1408–46.

    Article  PubMed  CAS  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ. Characterisation of an antibiotic produced by an strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother. 1986;29:488–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M. The plant growth promoting rhizobacteria Bacillus pumilus and B. licheniformis produce high amounts of physiologically active gibberellins. Plant Physiol. 2001;111:206–11.

    Article  Google Scholar 

  • Haas D, Defago G. Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quadt AV, Mahaffee WF, Kloepper J. Endophytic bacteria in agricultural crops. Can J Microbiol. 1997;43:895–914.

    Article  CAS  Google Scholar 

  • Harsha P, Sasidharan N, Madhavan K, Venkatachalam D, Rajendran S, Thayumanavan T, Babu S. Comparative evaluation of rice and sunhemp root inhabiting Pseudomonas fluorescens for optimized glucanase production. J Agric Biotech Sustain Dev. 2012;4:50–6.

    Google Scholar 

  • Howell CR, Stipanovic RD. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology. 1980;70:712–5.

    Article  CAS  Google Scholar 

  • Hynes RK, Leung GCY, Hirkala DLM, Nelson LM. Isolation, selection and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in Western Canada. Can J Microbiol. 2008;54:248–58.

    Article  PubMed  CAS  Google Scholar 

  • Kaur NP, Mukhopadhayay AN. Integrated control of chickpea wilt complex by Trichoderma spp. and chemical methods in India. Trop Pest Manag. 1992;38:372–5.

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 1980;286:885–6.

    Article  CAS  Google Scholar 

  • Kravchenko LV, Makarova NM, Azarova TS, Provorov NA, Tikhonovich IA. Isolation and phenotypic characteristics of growth-stimulating rhizobacteria (PGPR), with high root- colonizing and phytopathogenic fungi inhibiting abilities. Microbiol. 2002;71:521–5.

    Article  CAS  Google Scholar 

  • Kuc J. What’s old and what; new in concepts of induced systemic resistance in plants, and its applications. In: Tuzun S, Bent E, editors. Multigenic and induced resistance in plants. New York, NY: Springer; 2006. p. 9–20.

    Chapter  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot. 2010;29:591–8.

    Article  Google Scholar 

  • Kumar V, Kumar A, Kharwar RN. Antagonistic potential of fluorescent pseudomonads and control of charcoal rot of Chickpea caused by Macrophomina phaseolina. J Environ Biol. 2007;28:15–20.

    PubMed  Google Scholar 

  • Leah R, Tommerup S, Svendsen I, Murphy J. Biochemical molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991;266:1564–73.

    PubMed  CAS  Google Scholar 

  • Li DM, Alexander M. Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil. 1988;108:211–9.

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth- promoting rhizobacteria. Phytopathology. 1995;85:695–8.

    Article  Google Scholar 

  • Lutenberg BJ, Dekkers LC. What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol. 1999;1:9–13.

    Article  Google Scholar 

  • Mahajan K, Sharma JK, Dhage A. Evaluation of Trichoderma sp. against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris under in vitro condition. Int J Curr Microbiol Appl Sci. 2018;7:595–99.

    Google Scholar 

  • Mauch F, Hadwiger LA, Boller T. Ethylene: symptom, not signal for the induction of chitinase and-1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol. 1984;76:607–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mavrodi OV, McSpadden GBB, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS. Genetic diversity of phlD from 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology. 2001;91:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar T, Goswami C, Talukdar NC. Characterization and screening of beneficial bacteria obtained on King’s B agar from tea rhizosphere. Indian J Biotechnol. 2007;6:490–4.

    CAS  Google Scholar 

  • Meki S, Ahmed S, Sakhuja PK. Control of chickpea wilt (Fusarium oxysporum f. sp. ciceris) using Trichoderma spp. in Ethiopia. Arch Phytopathol Plant Protect. 2009;44:432–40.

    Article  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J. Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol. 1996;62:3061–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra VK, Passari AK, Singh BP. In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima wallichii. In: Kumar P, et al., editors. Current trends in plant disease diagnostics and management practices, fungal biology. Cham: Springer International Publishing Switzerland; 2016. p. 367–81.

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem. 2001;33:603–12.

    Article  CAS  Google Scholar 

  • Nandakumar R, Babu S, Raguchander T, Samiyappan R. Chitinolytic activity of native Pseudomonas fluorescens strains. J Agr Sci Technol. 2007;9:61–8.

    Google Scholar 

  • Nautiyal CS. Biocontrol of plant diseases for agricultural sustainability. In: Upadhyay RK, Mukerji KG, Chamola BP, editors. Biocontrol potential and its exploitation in sustainable agriculture, Crop Diseases, Weeds, and Nematodes, vol. 1. New York: Kluwer Academy Plenum; 2000. p. 9–23.

    Chapter  Google Scholar 

  • Oh DC, Jensen PR, Kauffman CA, Fenical W, Libertellenones A-D. Induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem. 2005;13:5267–73.

    Article  PubMed  CAS  Google Scholar 

  • Onsori H, Zamani R, Motallebi M, Zorghami N. Identification of over producer strain endo-β-1, 4-glucanase in Aspergillus species: characterization of crude carboxymethylcellulase. Afr J Biotechnol. 2005;4:26–30.

    CAS  Google Scholar 

  • Passari AK, Chandra P, Zothanpuia, Mishra VK, Leo VV, et al. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Res Microbil. 2016;167:692–705.

    Article  CAS  Google Scholar 

  • Passari AK, Lalsiamthari PC, Zothanpuia, Leo VV, Mishra VK, et al. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur J Plant Pathol. 2017;150:831–46.

    Article  CAS  Google Scholar 

  • Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol. 2015a;6:273, pp. 1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Passari AK, Mishra VK, Gupta VK, Yadav MK, Saikia R, et al. In Vitro and In Vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS ONE. 2015b;10(9):e0139468, pp. 1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passari AK, Upadhyaya K, Singh G, Abdel-Azeem AM, Thankappan S, et al. Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147. PLoS One. 2019;14(7):e0219014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patten C, Glick BR. Bacterial biosynthesis of Indole-3-acetic acid. Can J Microbiol. 1996;42:207–20.

    Article  PubMed  CAS  Google Scholar 

  • Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control. 2011;56:43–9.

    Article  Google Scholar 

  • Pieterse CMJ, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ Van Loon LC. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10:1571–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Planas A. Bacterial 1,3-1,4-beta-glucanase: structure, function and protein engineering. Biochem Biophys Acta. 2000;1543:361–82.

    PubMed  CAS  Google Scholar 

  • Pleban S, Ingel F, Chet I. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur J Plant Pathol. 1995;101:665–72.

    Article  Google Scholar 

  • Prasad MP. Production of Lipase enzyme from Pseudomonas aeruginosa isolated from lipid rich soil. Int J Pure App Biosci. 2014;2:77–81.

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD. Systemic acquired resistance. Plant Cell. 1996;8:1808–19.

    Article  Google Scholar 

  • Safiyazov JS, Mannanov RN, Sattarova RK. The use of bacterial antagonists for the control of cotton diseases. Field Crops Res. 1995;43:51–4.

    Article  Google Scholar 

  • Saikia R, Singh BP, Arora DK. Detection of pathogenesis-related proteins chitinase and β-1,3-glucanase in induced chickpea. Curr Sci. 2005;89:659–63.

    CAS  Google Scholar 

  • Saikia R, Singh K, Arora DK. Suppression of Fusarium-wilt and charcoal rot of chickpea by Pseudomonas aeruginosa RsB29. Indian J Microbiol. 2004;44:181–4.

    CAS  Google Scholar 

  • Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res. 2003;158:203–13.

    Article  PubMed  CAS  Google Scholar 

  • Sakthivel N, Sivamani E, Unnmalai N, Gananamanickam SS. Plant growth promoting rhizobacterial in enhancing plant growth and suppressing plant pathogens. Curr Sci. 1986;55:22–5.

    Google Scholar 

  • Salcher O, Lingens F, Fischer P. Biosynthesis von pyrrolnitrin. Tetrahedron Lett. 1978;34:3097–100.

    Article  Google Scholar 

  • Salisbury FB. The role of plant hormones in plant environment interactions. New York: Marcel Dekker; 1994.

    Google Scholar 

  • Sattar MA, Gaur AC. Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl Microbiol. 1987;142:393–5.

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol. 1987;25:339–58.

    Article  Google Scholar 

  • Siddiqui ZA, Irshad, Mahmood I, Hayat S. Biocontrol of Heterodera cajani and Fusarium udum on pigeon pea using Glomus mosseae, Paecilomyces lilacinus and Pseudomonas fluorescens. Thai J Agric Sci. 1998;31:310–21.

    Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR. Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol. 2002;19:57–64.

    Article  Google Scholar 

  • Singh BP, Rateb ME, Rodriguez-Couto S, Polizeli MLTM, Li W-J. Editorial: microbial secondary metabolites: recent developments and technological challenges. Front Microbiol. 2019;10:914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UP, Sarma BK, Singh DP. Effect of plant growth promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Curr Microbiol. 2003;46:131–40.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson PC, Padgham DE, Haware MP. Root exudates associated with the resistance of four chickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f. sp. ciceris. Plant Pathol. 1995;44:686–94.

    Article  Google Scholar 

  • Stevenson PC, Padgham DE, Haware MP. The chemical basis of resistance in chickpea to Fusarium wilt. Acta Hortic. 1994;381:631–7.

    Article  CAS  Google Scholar 

  • Stevenson PC, Turner HQ, Haware MP. Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to Fusarium wilt (Fusarium oxysporum f. sp. ciceris). Physiol Mol Plant Pathol. 1997;50:167–78.

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol. 1999;48:360–9.

    Article  Google Scholar 

  • Sullivan DJ, Gara F. Traits of fluorescent pseudomonads involved in suppression of plant root pathogens. Microbiol Rev. 1992;56:662–76.

    Google Scholar 

  • Toohey JI, Netson CD, Krotkov G. Isolation and identification of two phenazines from a strain of Pseudomonas aureofaciens. Can J Bot. 1965;43:1055–62.

    Article  CAS  Google Scholar 

  • Troppens DM, Dmitriev RI, Papkovsky DB, O’Gara F, Morrissey JP. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res. 2013;13:322–34.

    Article  PubMed  CAS  Google Scholar 

  • Van Emden HF, Ball SL, Rao MR. Pest disease and weed problems in pea lentil and faba bean and chickpea. In: World crops: cool season food legumes, ISBN 90-247-3641-2. Dordrecht: Kluwer Academic Publishers; 1988.

    Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453–83.

    Article  PubMed  Google Scholar 

  • Van Loon LC. Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC, editors. Mechanisms of resistance to plant diseases. Dordrecht: Kluwer Academic Publishers; 2000. p. 521–74.

    Chapter  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology. 1991;81:728–34.

    Article  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM. Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol. 2008;11:443–8.

    Article  PubMed  CAS  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000;97:8711–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’tWestend YAM, Hartog F, Van Loon LC. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact. 1997;10:716–24.

    Article  PubMed  Google Scholar 

  • Vazquez-Garciduenes S, Morales CAL, Estrella AH. Analysis of β-1,3glucanolytic system of biocontrol agent Trichoderma harzianum. Appl Environ Microbiol. 1998;64:1442–6.

    Article  Google Scholar 

  • Vessey KJ. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571–86.

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan A, Paranidhran V, Velazhahan R. Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. Oryzae in rice leaves. Phytoparasitica. 2001;29:155–66.

    Article  Google Scholar 

  • Vijayendra SV, Kashiwagi Y. Characterization of a new acid stable exo-beta-1,3-glucanase of Rhizoctonia solani and its action on microbial polysaccharides. Int J Biol Macromol. 2009;44:92–7.

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Ramot O, Chemin L, Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek. 2002;81:549–56.

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang R, Barz W. Purification characterisation and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arietinum L.). Planta. 1993;189:60–9.

    Article  PubMed  CAS  Google Scholar 

  • Voisard C, Keel O, Haas P, Defago G. Cyanide production by Pseudomonas fluorescens helps to suppress black root rot of tobacco under gnotobiotic condition. Eur Microbiol J. 1989;8:351–8.

    CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology. 1991;81:1508–12.

    Article  Google Scholar 

  • Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001;52:487–511.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg ED. Biosynthesis of secondary metabolites: roles of trace elements. Adv Microb Physiol. 1969;4:1–44.

    Article  Google Scholar 

  • Yadav J, Verma JP, Tiwari KN. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci. 2011;4:291–9.

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Zhu BW, Zhao JG, Yang JF, Mikiro T, Zhang ZS, Zhou DY. Purification and partial characterization of a novel β-1,3-glucanase from gut of a sea cucumber Stichopus japonicus. Process Biochem. 2008;43:1102–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Gupta, S., Gupta, M., Summuna, B. (2020). Exploration of Secondary Metabolites for Management of Chickpea Diseases. In: Singh, B., Singh, G., Kumar, K., Nayak, S., Srinivasa, N. (eds) Management of Fungal Pathogens in Pulses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-35947-8_2

Download citation

Publish with us

Policies and ethics