Skip to main content

Advertisement

Log in

Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the present study, 129 rhizospheric bacteria isolated from Curcuma longa were screened for their antagonistic potential against six fungal phytopathogens. Among them, 32 isolates that showed significant antagonistic potential were screened for their in vitro plant growth promoting (PGP) traits. The identification of potential isolates was confirmed by 16S rRNA gene sequencing and results revealed Bacillus as the dominant genus followed by Staphylococcus, Pseudomonas, Sphingomonas and Achromobacter. Based on the antagonistic activity and PGP traits; two strains (BPSRB4 and BPSRB14), identified as Bacillus amyloliquefaciens, were further tested for their in vivo PGP and disease suppression potential on Capsicum annuum seedlings under greenhouse conditions. The results demonstrated that BPSRB4 and BPSR14 strains suppress fungal pathogen infection and promote plant growth. Further, the BPSRB4 strain was positive for the production of the phytohormone indole acetic acid (IAA) detected by thin layer chromatography (TLC). In addition, nitrogen fixation and plant growth promotion activity were also confirmed by amplification and sequencing of nitrogen fixation gene (nifH) and ACC (1-aminocyclopropane-1-carboxylate) deaminase (acdS) gene from strains BPSRB4 and BPSRB14. The present study demonstrated that the B. amyloliquefaciens strains BPSRB4 and BPSR14 possess antagonistic activity and PGP potential which could be explored for the development of biofertilizers and biocontrol agents for the growth of chilli seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., et al. (2016). Plant growth promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3, 1.

    Article  Google Scholar 

  • Abraham, W. R., Estrela, A. B., Rohde, M., Smit, J., & Vancanneyt, M. (2013). Prosthecate sphingomonads: Proposal of Sphingomonas canadensis sp. nov. International Journal of Systamatic and Evolutionary Microbiology, 63, 3214–3219.

    Article  CAS  Google Scholar 

  • Amore, A., Parameswaran, B., Kumar, R., Vinciguerra, L. R., Marcolongo, L., et al. (2015). Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. Journal of Chemical Technology and Biotechnology, 90(3), 573–581.

    Article  CAS  PubMed  Google Scholar 

  • Antoun, H., & Prevost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Netherlands: Springer.

    Google Scholar 

  • Ariffin, H., Abdullah, N., Umi-Kalsom, M. S., Shirai, Y., & Hassan, M. A. (2006). Production and characterisation of cellulase by Bacillus pumilus eb3. International Journal of Engineering and Technology, 3(1), 47–53.

    Google Scholar 

  • Bakker, P. A., Berendsen, R. L., Doorrnbos, R. F., Wintermans, P. C., & Pieterse, C. M. (2013). The rhizosphere revisited: Root microbiomics. Frontiers in Plant Science, 4, 1–7.

    Article  Google Scholar 

  • Bal, H. B., Das, S., Dangar, T. K., & Adhya, T. K. (2013). ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. Journal of Basic Microbioliology, 53, 972–984.

    Article  CAS  Google Scholar 

  • Bergey, D. H., & Holt, J. G. (2000). Bergey’s manual of determinative bacteriology (9th ed.). Philadelphia: PA, Lippincott WilliamsandWilkins.

    Google Scholar 

  • Biari, A., Gholami, A., & Rahmani, H. A. (2008). Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. Journal of Biological Sciences, 8, 1015–1020.

    Article  CAS  Google Scholar 

  • Bredholdt, H., Galatenko, O. A., Engelhardt, K., Fjaervik, E., Terekhova, L. P., et al. (2007). Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: Isolation, diversity and biological activity. Environomental Microbiology, 9, 2756–2764.

    Article  CAS  Google Scholar 

  • Breidenbach, B., Pump, J., & Dumont, M. G. (2016). Microbial community structure in the rhizosphere of rice plants. Frontiers in Microbiology, 6, 1–12.

    Article  Google Scholar 

  • Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid In situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappucino, J. C., & Sherman, N. (1992). Microbiology: A laboratory manual (pp. 125–179). Cummings Publishing Company, New York: Benjamin.

    Google Scholar 

  • Chattopadhyay, I., Kaushik, B., Uday, B., & Banerjee, R. K. (2013). Turmeric and curcumin: Biological actions and medicinal applications. Current Science, 87(1), 44–53.

    Google Scholar 

  • Clark, D., Youngblood, C., Taplin, M., Brown, E., Williams, B. S., et al. (2014). Impact of iron availability on Bacillus amyloliquefaciens growth. Advances in Microbiology, 4, 962–967.

    Article  CAS  Google Scholar 

  • Datta, M., Sengupta, C., & Pandit, M. K. (2010). Isolation and characterization of bacterial isolates from chilli (Capsicum annuum L.) rhizosphere as potent plant growth promoter. Journal of Crop and Weed, 6(2), 50–58.

    Google Scholar 

  • Deb, P., Talukdar, S. A., Mohsina, K., Sarker, P. K., & Sayem, S. A. (2013). Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springer Plus, 2, 1–12.

    Article  Google Scholar 

  • Deepa, C. K., Dastager, S. G., & Pandey, A. (2010). Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 26, 1233–1240.

    Article  CAS  PubMed  Google Scholar 

  • Drogue, B., Doré, H., Borland, S., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2012). Which specificity in cooperation between phytostimulating rhizobacteria and plants. Research in Microbiology, 163, 500–510.

    Article  PubMed  Google Scholar 

  • Dutta, J., Handique, P. J., & Thakur, D. (2015). Assessment of Culturable tea Rhizobacteria isolated from Tea Estates of Assam, India for growth promotion in commercial tea cultivars. Frontiers in Microbiology, 6, 1–13.

    Google Scholar 

  • El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y., & Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5, 1–11.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits of phylogenies: An approach using the bootstrap. Evolution, 39(4), 783–791.

    Article  PubMed  Google Scholar 

  • Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  • Goudjal, Y., Toumatia, O., Yekkour, A., Sabaou, N., Mathieu, F., et al. (2013). Biocontrol of Rhizoctonia solani damping off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiological Research, 169, 59–65.

    Article  PubMed  Google Scholar 

  • Gregory, P. J., Sperry, M., & Wilson, A. F. (2008). Dietary supplements for osteoarthritis. American Family Physician, 77(2), 177–184.

    PubMed  Google Scholar 

  • Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67, 597–607.

    Article  Google Scholar 

  • Hassan, M. N., Afghan, S., & Hafeez, F. Y. (2010). Erratum to: Suppression of red rot caused by Colletotrichum falcatum on sugarcane plants using plant growth-promoting rhizobacteria. BioControl, 55, 531–542.

    Article  Google Scholar 

  • Jasim, B., Jimtha, J. C., Mathew, J., & Radhakrishnan, E. K. (2013). Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation, 71, 1–11.

    Article  CAS  Google Scholar 

  • Ji, S. H., Gururani, M. A., & Chun, S. C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169, 83–98.

    Article  CAS  PubMed  Google Scholar 

  • Kareem, M. A., Aboud, H. M., Saood, H. M., & Shibly, M. K. (2014). Antagonistic activity of some plant growth rhizosbacteria to F. graminearum. International Journal of phytopathology, 03(01), 49–54.

    Google Scholar 

  • Kavamura, V. N., Santos, S. N., Da-Silva, J. L., Parmaa, M. M., Avilaa, L. A., et al. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiolological Research, 168, 183–191.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature, 268, 885–886.

    Article  Google Scholar 

  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012a). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiolological Research, 167, 493–499.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C., et al. (2012b). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: An in vitro study. Recent Research in Science and Technology, 4(1), 01–05.

    Google Scholar 

  • Liu, F. P., Liu, H. Q., Zhou, H. L., Dong, Z. G., Bai, X. H., et al. (2014). Isolation and characterization of phosphate solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50, 927–937.

    Article  CAS  Google Scholar 

  • Liu, K., Garrett, C., Fadamiro, H., & Kloepper, J. W. (2016). Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). BioControl. https://doi.org/10.1007/s10526-016-9742-3.

  • Manivannan, M., Ganesh, P., Suresh, K. R., Tharmaraj, K., & Shiney, R. B. (2012). Isolation, screening, characterization and antagonism assay of PGPR isolates from rhizosphere of rice plants in Cuddalore district. International Journal of Pharmaceutical and Biological Archive, 3(1), 179–185.

    Google Scholar 

  • Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biolology and Biochemistry, 42, 1229–1235.

    Article  CAS  Google Scholar 

  • Mena-Violante, H. G., & Olalde-Portugal, V. (2007). Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113, 103–106.

    Article  CAS  Google Scholar 

  • Minaxi, L. N., Yadav, R. C., & Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology, 59, 124–135.

    Article  Google Scholar 

  • Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649.

    Google Scholar 

  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, P., Sahgal, M., Maheswari, D. K., & Johri, B. N. (2004). Genetic diversity of rhizobia iisolated from medicinal legumes growing in the sub-himalayan region of Uttaranchal. Current Science, 86(1), 2002–2207.

    Google Scholar 

  • Passari, A. K., Mishra, V. K., Saikia, R., Gupta, V. K., & Singh, B. P. (2015a). Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Frontiers in Microbiology, 6, 1–13.

    Article  Google Scholar 

  • Passari, A. K., Mishra, V. K., Gupta, V. K., Yadav, M. K., Saikia, R., et al. (2015b). In Vitro and In Vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PloS One, 10(9), e0139468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Der-Putten, W. H. V. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Qin, S., Li, J., Chen, H. H., Zhao, G. Z., & Zhu, W. Y. (2009). Isolation, diversity and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Applied and Environmental Microbiology, 75, 6176–6186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin, F., Cakmakci, R., & Kanta, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil, 265, 123–129.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam, V., & Kanoujia, N. (2011). Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. Sp. lycospersici by plant growth promoting rhizobacterial mixture. Biological Control, 57, 85–93.

    Article  Google Scholar 

  • Singh, J., Batra, N., & Sobti, R. C. (2004). Purification and characterization of alkaline cellulase produced by a novel isolate Bacillus sphaericus JS1. The Journal of Industrial Microbiology and Biotechnology, 31(2), 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Somers, E., Vanderleyden, J., & Srinivasan, M. (2004). Rhizosphere bacterial signalling: A love parade beneath our feet. Critical Reviews in Microbiology, 30, 205–240.

    Article  CAS  PubMed  Google Scholar 

  • Sudha, S. N., Jayakumar, R., & Sekar, V. (1999). Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium. Bacillus polymyxa. Current Microbiology, 38, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Swain, M. R., Kar, S., Padmaja, G., & Ray, R. C. (2006). Partial characterization and optimization of production of extracellular α-amylase from Bacillus subtilis isolated from culturable cow dung microflora. Polish Journal of Microbiology, 55(4), 289–296.

    CAS  PubMed  Google Scholar 

  • Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.

    Article  Google Scholar 

  • Wahyudi, A. T., Astuti, R. P., Widyawati, A., & Nawangsih, A. A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. Journal of Microbiology and Antimicrobials, 3, 34–40.

    Google Scholar 

  • Xing-hua, L., Hua-jun, Y., Bhaskar, R., Dan, W., Wan-fu, Y., et al. (2009). The most stirring technology in future: Cellulase enzyme and biomass utilization. Journal of Microbiology and Biotechnology, 1(1), 229–233.

    Google Scholar 

  • Zehnder, G. W., YAO, C., Murphy, J. F., Sikora, E. R., & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl, 45, 127–137.

    Article  Google Scholar 

  • Zhu, C., Sun, G., Chen, X., Guo, J., & Xu, M. (2014). Lysinibacillus varians sp. nov., an endospore forming bacterium with a filament to rod cell cycle. International Journal of Systematic and Evolutionary Microbiology, 64, 3644–3649.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants sanctioned to BPS from the Science and Engineering Research Board (SERB), Department of Science and Technology, the Government of India, New Delhi under Empowerment and Equity Opportunities for Excellent in Science (SERB/F/8195/2015-16). BPS is also thankful to University Grants Commission (UGC), New Delhi for funding a Major Research Project. The authors wish to thank the Department of Biotechnology for the establishment of DBT-BIF centre and DBT-state Biotech Hub in the Department, which has been used for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Pratap Singh.

Ethics declarations

Authors declared that this manuscript have not published elsewhere. All the authors have read very carefully and approved current version of this manuscript. All authors also declared that the data or images have not manipulated. This article does not contain any experiments with human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passari, A.K., Lalsiamthari, P.C., Zothanpuia et al. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur J Plant Pathol 150, 831–846 (2018). https://doi.org/10.1007/s10658-017-1325-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1325-3

Keywords

Navigation