Skip to main content

Engineering Natural-Based Photocrosslinkable Hydrogels for Cartilage Applications

  • Chapter
  • First Online:
Bio-Materials and Prototyping Applications in Medicine

Abstract

Articular tissue is an avascular tissue at the ends of articulating joints which provides lubrication and transmission of compressive forces during movement. The tissue has poor regenerative capacity and low cellular metabolic activity thus disease or trauma can result in significant clinical issues characterised by pain in the joints and restriction of movement. This can affect patient’s quality of life and impose substantial socioeconomic costs on society. Currently no treatment can prevent the long-term degradation of the tissue, so new and improved therapies are required. Tissue engineering based strategies are a promising approach to repair and regenerate damaged tissue. Natural hydrogel-based scaffolds have been widely developed to promote cartilage regeneration due to their biocompatibility, resemblance to the native extracellular matrix, and capacity for cell encapsulation. However, a key challenge is the engineering of biomimetic hydrogels to promote the development of articular cartilage rather than fibrocartilage. Hydrogels can be designed through the selection of appropriate materials, crosslinking mechanisms, mechanical properties and the incorporation of biofunctional moieties that can regulate biodegradation, cell attachment and differentiation, and the delivery of biomolecules. The range of parameters to engineer provides the opportunity to fabricate biomimetic structures that can facilitate cartilage regeneration. However, the complexity of the challenge is daunting and requires an interdisciplinary approach to successfully fabricate hydrogel-based scaffolds that can promote long-term regeneration of articular cartilage. In this chapter we will provide recent advances in the design and engineering of naturally derived photocrosslinkable hydrogels for cartilage tissue engineering. A brief description of the structure and composition of cartilage tissue will be provided. An overview of hydrogel properties, synthesis routes, crosslinking methods, and strategies for hydrogel biofunctionalisation will be described. Finally, a conclusion and future perspectives on the direction of articular cartilage tissue engineering will be provided.

In this chapter we will provide recent advances in the design and engineering of naturally derived photocrosslinkable hydrogels for cartilage tissue engineering. A brief description of the structure and composition of cartilage tissue will be provided. An overview of hydrogel properties, synthesis routes, crosslinking methods, and strategies for hydrogel biofunctionalisation will be described. Finally, a conclusion and future perspectives on the direction of articular cartilage tissue engineering will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Langer, J.P. Vacanti, Tissue engineering. Science (New York, NY) 260(5110), 920 (1993)

    Article  CAS  Google Scholar 

  2. M.M. Stevens, Toxicology: testing in the third dimension. Nat Nanotechnol 4(6), 342 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. E.S. Place, J.H. George, C.K. Williams, M.M. Stevens, Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4), 1139–1151 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. G. Jell, R. Swain, M.M. Stevens, Raman spectroscopy: a tool for tissue engineering, in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, (Springer, Heidelberg, 2010), pp. 419–437

    Chapter  Google Scholar 

  5. E.S. Place, N.D. Evans, M.M. Stevens, Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. A.R. Verissimo, K.J.D.P. Nakayama, Scaffold-free biofabrication, in 3D Printing and Biofabrication, (Springer, 2018), pp. 431–450

    Google Scholar 

  7. G.D. DuRaine, W.E. Brown, J.C. Hu, K.A. Athanasiou, Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng 43(3), 543–554 (2015)

    Article  PubMed  Google Scholar 

  8. D.J. Huey, J.C. Hu, K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive. Science 338(6109), 917–921 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Jung, H. Ji, Z. Chen, H. Fai Chan, L. Atchison, B. Klitzman, et al., Scaffold-free, human mesenchymal stem cell-based tissue engineered blood vessels. Scientific reports 5, 15116 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Ovsianikov, A. Khademhosseini, V. Mironov, The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 36(4), 348–357 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. C.A. DeForest, K.S. Anseth, Advances in bioactive hydrogels to probe and direct cell fate. Ann Rev. Chem. Biomol. Eng. 3, 421–444 (2012)

    Article  CAS  Google Scholar 

  12. M.P. Lutolf, Biomaterials: spotlight on hydrogels. Nat. Mater. 8(6), 451–453 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. G. Camci-Unal, N. Annabi, M.R. Dokmeci, R. Liao, A. Khademhosseini, Hydrogels for cardiac tissue engineering. NPG Asia Mater. 6, e99 (2014)

    Article  CAS  Google Scholar 

  14. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54(1), 3–12 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. H.L. Lim, Y. Hwang, M. Kar, S. Varghese, Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2(5), 603–618 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, A.T. Metters, F.E. Weber, G.B. Fields, et al., Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. PNAS 100(9), 5413–5418 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R.F. Pereira, P.J. Bártolo, 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 132(48) (2015)

    Google Scholar 

  18. J. Martel-Pelletier, A.J. Barr, F.M. Cicuttini, P.G. Conaghan, C. Cooper, M.B. Goldring, et al., Osteoarthritis. Nat. Rev. Dis. Primers. 2, 16072 (2016)

    Article  PubMed  Google Scholar 

  19. I.L. Kim, R.L. Mauck, J.A. Burdick, Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34), 8771–8782 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P.R. van Weeren, General anatomy and physiology of joints, in Joint disease in the horse, (Elsevier, Amsterdam, Netherlands, 2016), pp. 1–24

    Google Scholar 

  21. J. Perera, P. Gikas, G. Bentley, The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 94(6), 381–387 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Armiento, M. Stoddart, M. Alini, D. Eglin, Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 65, 1–20 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. D.F. Duarte Campos, W. Drescher, B. Rath, M. Tingart, H. Fischer, Supporting biomaterials for articular cartilage repair. Cartilage 3(3), 205–221 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  24. K.J. Jones, W.L. Sheppard, A. Arshi, B.B. Hinckel, S.L. Sherman, Articular cartilage lesion characteristic reporting Is highly variable in clinical outcomes studies of the knee. Cartilage 10(3), 299–304 (2018). https://doi.org/10.1177/1947603518756464

    Article  PubMed  PubMed Central  Google Scholar 

  25. S.P. Nukavarapu, D.L. Dorcemus, Osteochondral tissue engineering: Current strategies and challenges. Biotechnol. Adv. 31(5), 706–721 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. G.P. Huang, A. Molina, N. Tran, G. Collins, T.L. Arinzeh, Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J Tissue Eng Regen Med 12(1), e592–e603 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. T. Guo, J. Lembong, L.G. Zhang, J.P. Fisher, Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue. Tissue Eng Part B Rev 23(3), 225–236 (2017)

    Article  PubMed  Google Scholar 

  28. S. Camarero-Espinosa, B. Rothen-Rutishauser, E.J. Foster, C. Weder, Articular cartilage: From formation to tissue engineering. Biomater. Sci. 4(5), 734–767 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. R.J. Lories, F.P. Luyten, The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7(1), 43–49 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. J.S. Temenoff, A.G. Mikos, Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 21(5), 431–440 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Z. Izadifar, X. Chen, W. Kulyk, Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 3(4), 799–838 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Zhang, J. Hu, K.A. Athanasiou, The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2), 1–57 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  33. B. Mollon, R. Kandel, J. Chahal, J. Theodoropoulos, The clinical status of cartilage tissue regeneration in humans. Osteoarthr. Cartil. 21(12), 1824–1833 (2013)

    Article  CAS  Google Scholar 

  34. A.J. Sophia Fox, A. Bedi, S.A. Rodeo, The basic science of articular cartilage: Structure, composition, and function. Sports Health 1(6), 461–468 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  35. E.B. Hunziker, Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6), 432–463 (2002)

    Article  CAS  Google Scholar 

  36. Z. Lin, C. Willers, J. Xu, M.H. Zheng, The chondrocyte: Biology and clinical application. Tissue Eng. 12(7), 1971–1984 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. WY.-w. Lee, B. Wang, Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Trans 9, 76–88 (2017)

    Google Scholar 

  38. L. Kjellen, U. Lindahl, Proteoglycans: Structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991)

    Article  CAS  PubMed  Google Scholar 

  39. E. Sugawara, H. Nikaido, Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 58(12), 7250–7257 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Z. Abusara, M. Von Kossel, W. Herzog, In vivo dynamic deformation of articular cartilage in intact joints loaded by controlled muscular contractions. PLoS One 11(1), e0147547 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. S. Lusse, H. Claassen, T. Gehrke, J. Hassenpflug, M. Schunke, M. Heller, et al., Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn. Reson. Imaging 18(4), 423–430 (2000)

    Article  CAS  PubMed  Google Scholar 

  42. J.A. Buckwalter, H.J. Mankin, Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47, 477–486 (1998)

    CAS  PubMed  Google Scholar 

  43. C. Weiss, The physiologoy and pathology of hyaluronic acid in joints. Ups. J. Med. Sci. 82(2), 95–96 (1977)

    Article  CAS  PubMed  Google Scholar 

  44. T.A. Schmidt, N.S. Gastelum, Q.T. Nguyen, B.L. Schumacher, R.L. Sah, Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum. 56(3), 882–891 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Li, X. Wei, J. Zhou, L. Wei, The age-related changes in cartilage and osteoarthritis. BioMed Res Int 2013, 916530 (2013)

    PubMed  PubMed Central  Google Scholar 

  46. International Cartilage Regeneration and Joint Preservation Society (ICRS). Other cartilaginous parts of the body. Available from: https://cartilage.org/patient/about-cartilage/welcome-to-our-joint/other-cartilaginous-parts-of-the-body/. Accessed 24 Apr 2019

  47. D.J. Huey, J.C. Hu, K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive. Science (New York, NY) 338(6109), 917–921 (2012)

    Article  CAS  Google Scholar 

  48. C. Chung, J.A. Burdick, Engineering cartilage tissue. Adv. Drug Deliv. Rev. 60(2), 243–262 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. D. Correa, S.A. Lietman, Articular cartilage repair: Current needs, methods and research directions. Semin. Cell Dev. Biol. 62, 67–77 (2017)

    Article  PubMed  Google Scholar 

  50. W. Swieszkowski, B.H. Tuan, K.J. Kurzydlowski, D.W. Hutmacher, Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24(5), 489–495 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. S.N. Redman, S.F. Oldfield, C.W. Archer, Current strategies for articular cartilage repair. Eur. Cell. Mater. 9, 23–32 (2005).; discussion 23-32

    Article  CAS  PubMed  Google Scholar 

  52. Y. Liu, G. Zhou, Y. Cao, Recent progress in cartilage tissue engineering—Our experience and future directions. Engineering 3(1), 28–35 (2017)

    Article  CAS  Google Scholar 

  53. G. Kalamegam, A. Memic, E. Budd, M. Abbas, A. Mobasheri, A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. Adv. Exp. Med. Biol. 1089, 23–36 (2018)

    Article  CAS  PubMed  Google Scholar 

  54. C. Loebel, J.A. Burdick, Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell 22(3), 325–339 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. F.R. Maia, M.R. Carvalho, J.M. Oliveira, R.L. Reis, Tissue engineering strategies for osteochondral repair. Adv. Exp. Med. Biol. 1059, 353–371 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. M. Abbas, M. Alkaff, A. Jilani, H. Alsehli, L. Damiati, M. Kotb, et al., Combination of mesenchymal stem cells, cartilage pellet and bioscaffold supported cartilage regeneration of a full thickness articular surface defect in rabbits. J Tissue Eng Regen Med 15(5), 661–671 (2018)

    Article  CAS  Google Scholar 

  57. C. Vyas, G. Poologasundarampillai, J. Hoyland, P. Bartolo, 3D printing of biocomposites for osteochondral tissue engineering, in Biomedical Composites, ed. by L. Ambrosio, 2nd edn., (Woodhead Publishing, Sawston, Cambridge, UK, 2017), pp. 261–302

    Google Scholar 

  58. H. Omidian, K. Park, Hydrogels, in Fundamentals and Applications of Controlled Release Drug Delivery, ed. by J. Siepmann, R. A. Siegel, M. J. Rathbone, (Springer US, Boston, 2012), pp. 75–105

    Chapter  Google Scholar 

  59. A. Barbetta, E. Barigelli, M. Dentini, Porous alginate hydrogels: Synthetic methods for tailoring the porous texture. Biomacromolecules 10(8), 2328–2337 (2009)

    Article  CAS  PubMed  Google Scholar 

  60. J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, Interaction of different types of cells on polymer surfaces with wettability gradient. J. Colloid Interface Sci. 205(2), 323–330 (1998)

    Article  CAS  PubMed  Google Scholar 

  61. S. Utech, A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1), 271–310 (2016)

    Article  CAS  Google Scholar 

  62. T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26), 6020–6041 (2012)

    Article  CAS  PubMed  Google Scholar 

  63. M.C. Straccia, I. Romano, A. Oliva, G. Santagata, P. Laurienzo, Crosslinker effects on functional properties of alginate/N-succinylchitosan based hydrogels. Carbohydr. Polym. 108, 321–330 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, et al., Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5, 17014 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Q.G. Wang, N. Hughes, S.H. Cartmell, N.J. Kuiper, The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile. Eur. Cell. Mater. 19, 86–95 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. J. Malda, J. Visser, F.P. Melchels, T. Jungst, W.E. Hennink, W.J. Dhert, et al., 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 25(36), 5011–5028 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. S. Fu, A. Thacker, D.M. Sperger, R.L. Boni, I.S. Buckner, S. Velankar, et al., Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech 12(2), 453–460 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. P. Stagnaro, I. Schizzi, R. Utzeri, E. Marsano, M. Castellano, Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohydr. Polym. 185, 56–62 (2018)

    Article  CAS  PubMed  Google Scholar 

  69. A.D. Rouillard, C.M. Berglund, J.Y. Lee, W.J. Polacheck, Y. Tsui, L.J. Bonassar, et al., Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng. Part C Methods 17(2), 173–179 (2011)

    Article  CAS  PubMed  Google Scholar 

  70. I.D. Paepe, H. Declercq, M. Cornelissen, E. Schacht, Novel hydrogels based on methacrylate-modified agarose. Polym Int 51(10), 867–870 (2002)

    Article  Google Scholar 

  71. A. Tripathi, A. Kumar, Multi-featured macroporous agarose-alginate cryogel: Synthesis and characterization for bioengineering applications. Macromol. Biosci. 11(1), 22–35 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. H. Lin, A.W. Cheng, P.G. Alexander, A.M. Beck, R.S. Tuan, Cartilage Tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution. Tissue Eng Part A 20(17–18), 2402–2411 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, et al., Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 5(1), 108–118 (2016)

    Article  CAS  PubMed  Google Scholar 

  74. A. Skardal, J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, G.D. Prestwich, Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16(8), 2675–2685 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. T. Billiet, B. Van Gasse, E. Gevaert, M. Cornelissen, J.C. Martins, P. Dubruel, Quantitative contrasts in the photopolymerization of acrylamide and methacrylamide-functionalized gelatin hydrogel building blocks. Macromol. Biosci. 13(11), 1531–1545 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. X. Li, S. Chen, J. Li, X. Wang, J. Zhang, N. Kawazoe, et al., 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers 8(8), 269 (2016)

    Article  PubMed Central  Google Scholar 

  77. Y. Zhou, K. Liang, S. Zhao, C. Zhang, J. Li, H. Yang, et al., Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int. J. Biol. Macromol. 108, 383–390 (2018)

    Article  CAS  PubMed  Google Scholar 

  78. I.S. Cho, M.O. Cho, Z. Li, M. Nurunnabi, S.Y. Park, S.-W. Kang, et al., Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr. Polym. 144, 59–67 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. J.M. Jukes, L.J. van der Aa, C. Hiemstra, V. Tv, P.J. Dijkstra, Z. Zhong, et al., A newly developed chemically crosslinked dextran–poly(ethylene glycol) hydrogel for cartilage tissue engineering. Tissue Eng Part A 16(2), 565–573 (2010)

    Article  CAS  PubMed  Google Scholar 

  80. K. Szafulera, R.A. Wach, A.K. Olejnik, J.M. Rosiak, P. Ulański, Radiation synthesis of biocompatible hydrogels of dextran methacrylate. Radiat. Phys. Chem. 142, 115–120 (2018)

    Article  CAS  Google Scholar 

  81. G. Chen, N. Kawazoe, Y. Ito, Photo-crosslinkable hydrogels for tissue engineering applications, in Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy, ed. by Y. Ito, (Springer, Singapore, 2018), pp. 277–300

    Chapter  Google Scholar 

  82. J.T. Oliveira, L. Martins, R. Picciochi, P.B. Malafaya, R.A. Sousa, N.M. Neves, et al., Gellan gum: A new biomaterial for cartilage tissue engineering applications. J. Biomed. Mater. Res. A 93(3), 852–863 (2010)

    CAS  PubMed  Google Scholar 

  83. M.A. Omobono, X. Zhao, M.A. Furlong, C.-H. Kwon, T.J. Gill, M.A. Randolph, et al., Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J. Biomed. Mater. Res. A 103(4), 1332–1338 (2015)

    Article  PubMed  Google Scholar 

  84. K. Yang, J. Sun, D. Wei, L. Yuan, J. Yang, L. Guo, et al., Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. B 5(44), 8707–8718 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. K. Markstedt, A. Mantas, I. Tournier, H. Martinez Avila, D. Hagg, P. Gatenholm, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5), 1489–1496 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. R.L. Mauck, M.A. Soltz, C.C. Wang, D.D. Wong, P.H. Chao, W.B. Valhmu, et al., Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122(3), 252–260 (2000)

    Article  CAS  PubMed  Google Scholar 

  87. M.S. Ponticiello, R.M. Schinagl, S. Kadiyala, F.P. Barry, Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J. Biomed. Mater. Res. 52(2), 246–255 (2000)

    Article  CAS  PubMed  Google Scholar 

  88. S. Ibusuki, A. Papadopoulos, M.P. Ranka, G.J. Halbesma, M.A. Randolph, R.W. Redmond, et al., Engineering cartilage in a photochemically crosslinked collagen gel. J. Knee Surg. 22(1), 72–81 (2009)

    Article  PubMed  Google Scholar 

  89. H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13), 2499–2506 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J.K. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21(24), 2589–2598 (2000)

    Article  CAS  PubMed  Google Scholar 

  91. W. Sun, B. Xue, Y. Li, M. Qin, J. Wu, K. Lu, et al., Polymer-supramolecular polymer double-network hydrogel. Adv Funct Mater 26(48), 9044–9052 (2016)

    Article  CAS  Google Scholar 

  92. Y.J. Seol, J.Y. Park, W. Jeong, T.H. Kim, S.Y. Kim, D.W. Cho, Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. J. Biomed. Mater. Res. A 103(4), 1404–1413 (2015)

    Article  PubMed  Google Scholar 

  93. B.R. Mintz, J.A. Cooper Jr., Hybrid hyaluronic acid hydrogel/poly(varepsilon-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies. J. Biomed. Mater. Res. A 102(9), 2918–2926 (2014)

    Article  PubMed  Google Scholar 

  94. F.A. Formica, E. Ozturk, S.C. Hess, W.J. Stark, K. Maniura-Weber, M. Rottmar, et al., A bioinspired ultraporous nanofiber-hydrogel mimic of the cartilage extracellular matrix. Adv. Healthc. Mater. 5(24), 3129–3138 (2016)

    Article  CAS  PubMed  Google Scholar 

  95. D. Chimene, K.K. Lennox, R.R. Kaunas, A.K. Gaharwar, Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 44(6), 2090–2102 (2016)

    Article  PubMed  Google Scholar 

  96. N. Naseri, B. Deepa, A.P. Mathew, K. Oksman, L. Girandon, Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 17(11), 3714–3723 (2016)

    Article  CAS  PubMed  Google Scholar 

  97. X. Zhang, G.J. Kim, M.G. Kang, J.K. Lee, J.W. Seo, J.T. Do, et al., Marine biomaterial-based bioinks for generating 3D printed tissue constructs. Mar Drugs 16(12), 484 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  98. D. Chimene, C.W. Peak, J.L. Gentry, J.K. Carrow, L.M. Cross, E. Mondragon, et al., Nanoengineered ionic–covalent entanglement (NICE) bioinks for 3D bioprinting. ACS Appl. Mater. Interfaces 10(12), 9957–9968 (2018)

    Article  CAS  PubMed  Google Scholar 

  99. T. Lorson, S. Jaksch, M.M. Lubtow, T. Jungst, J. Groll, T. Luhmann, et al., A thermogelling supramolecular hydrogel with sponge-like morphology as a cytocompatible bioink. Biomacromolecules 18(7), 2161–2171 (2017)

    Article  CAS  PubMed  Google Scholar 

  100. C.D. O’Connell, C. Di Bella, F. Thompson, C. Augustine, S. Beirne, R. Cornock, et al., Development of the biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8(1), 015019 (2016)

    Article  PubMed  Google Scholar 

  101. C. Onofrillo, S. Duchi, C.D. O’Connell, R. Blanchard, A.J. O’Connor, M. Scott, et al., Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication 10(4), 045006 (2018)

    Article  PubMed  Google Scholar 

  102. S.J. Bidarra, C.C. Barrias, P.L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 10(4), 1646–1662 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. K.S. Lim, R. Levato, P.F. Costa, M.D. Castilho, C.R. Alcala-Orozco, K.M.A. van Dorenmalen, et al., Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10(3), 034101 (2018)

    Article  PubMed  Google Scholar 

  104. X. Pan, M.A. Tasdelen, J. Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Photomediated controlled radical polymerization. Prog. Polym. Sci. 62, 73–125 (2016)

    Article  CAS  Google Scholar 

  105. W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54(1), 13–36 (2002)

    Article  CAS  PubMed  Google Scholar 

  106. R.P. Rastogi, Richa, A. Kumar, M.B. Tyagi, R.P. Sinha, Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010, 592980 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  107. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571(1), 3–17 (2005)

    Article  CAS  PubMed  Google Scholar 

  108. J.-L. Ravanat, T. Douki, J. Cadet, Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B Biol. 63(1), 88–102 (2001)

    Article  CAS  Google Scholar 

  109. J.P.M. Wood, G. Lascaratos, A.J. Bron, N.N. Osborne, The influence of visible light exposure on cultured RGC-5 cells. Mol. Vis. 14, 334–344 (2007)

    PubMed  PubMed Central  Google Scholar 

  110. E. Maverakis, Y. Miyamura, M.P. Bowen, G. Correa, Y. Ono, H. Goodarzi, Light, including ultraviolet. J. Autoimmun. 34(3), J247–JJ57 (2010)

    Article  CAS  PubMed  Google Scholar 

  111. N. Eslahi, M. Abdorahim, A. Simchi, Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromolecules 17(11), 3441–3463 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. N.D. Tsihlis, J. Murar, M.R. Kapadia, S.S. Ahanchi, C.S. Oustwani, J.E. Saavedra, et al., Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J. Vasc. Surg. 51(5), 1248–1259 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  113. J.J. Roberts, S.J. Bryant, Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 34(38), 9969–9979 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. F. Tanaka, S.F. Edwards, Viscoelastic properties of physically crosslinked networks: Part 1. Non-linear stationary viscoelasticity. J. Non-Newtonian Fluid Mech. 43(2), 247–271 (1992)

    Article  CAS  Google Scholar 

  115. L. Zhao, H. Mitomo, F. Yosh, Synthesis of pH-sensitive and biodegradable CM-cellulose/chitosan polyampholytic hydrogels with electron beam irradiation. J Bioact Compat Pol 23(4), 319–333 (2008)

    Article  CAS  Google Scholar 

  116. T. Miyazaki, Y. Takeda, S. Akane, T. Itou, A. Hoshiko, K.J.P. En, Role of boric acid for a poly (vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid. Polymer 51(23), 5539–5549 (2010)

    Article  CAS  Google Scholar 

  117. F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: A review. Mater Sci Eng C Mater Biol Appl 57, 414–433 (2015)

    Article  CAS  PubMed  Google Scholar 

  118. R.F. Pereira, P.J. Bártolo, 3D photo-fabrication for tissue engineerying and drug delivery. Engineering 1(1), 090–112 (2015)

    Article  CAS  Google Scholar 

  119. F. Jivan, N. Fabela, Z. Davis, D.L. Alge, Orthogonal click reactions enable the synthesis of ECM-mimetic PEG hydrogels without multi-arm precursors. J Mater Chem B 6(30), 4929–4936 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. H. Shih, C.C. Lin, Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules 13(7), 2003–2012 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. I.-M. Yu, F.M. Hughson, Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26, 137–156 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. L.-S. Wang, C. Du, W.S. Toh, A.C. Wan, S.J. Gao, M. Kurisawa, Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35(7), 2207–2217 (2014)

    Article  CAS  PubMed  Google Scholar 

  123. L. Bian, C. Hou, E. Tous, R. Rai, R.L. Mauck, J.A. Burdick, The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials 34(2), 413–421 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. C. Chung, J. Mesa, M.A. Randolph, M. Yaremchuk, J.A. Burdick, Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J. Biomed. Mater. Res. A 77(3), 518–525 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  125. A.J. Neumann, T. Quinn, S.J. Bryant, Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Acta Biomater. 39, 1–11 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. G.C. Ingavle, S.H. Gehrke, M.S. Detamore, The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35(11), 3558–3570 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. S.C. Skaalure, S.O. Dimson, A.M. Pennington, S.J. Bryant, Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Acta Biomater. 10(8), 3409–3420 (2014)

    Article  CAS  PubMed  Google Scholar 

  128. C.B. Rodell, N.N. Dusaj, C.B. Highley, J.A. Burdick, Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking. Adv Mater 28(38), 8419–8424 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. H. Jung, J.S. Park, J. Yeom, N. Selvapalam, K.M. Park, K. Oh, et al., 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 15(3), 707–714 (2014)

    Article  CAS  PubMed  Google Scholar 

  130. K. Wei, M. Zhu, Y. Sun, J. Xu, Q. Feng, S. Lin, et al., Robust biopolymeric supramolecular “host−guest macromer” hydrogels reinforced by in situ formed multivalent nanoclusters for cartilage regeneration. Macromolecules 49(3), 866–875 (2016)

    Article  CAS  Google Scholar 

  131. Y. Guo, T. Yuan, Z. Xiao, P. Tang, Y. Xiao, Y. Fan, et al., Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 23(9), 2267–2279 (2012)

    Article  CAS  PubMed  Google Scholar 

  132. T. Wang, J.H. Lai, F. Yang, Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo. Tissue Eng. Part A 22(23–24), 1348–1356 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. S.J. Bryant, K.S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59(1), 63–72 (2002)

    Article  CAS  PubMed  Google Scholar 

  134. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S.A. Bencherif, J.C. Weaver, et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15(3), 326–334 (2016)

    Article  CAS  PubMed  Google Scholar 

  135. M. Darnell, S. Young, L. Gu, N. Shah, E. Lippens, J. Weaver, et al., Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv Healthcare Mater 6(1) 1601185 (2017)

    Google Scholar 

  136. H.P. Lee, L. Gu, D.J. Mooney, M.E. Levenston, O. Chaudhuri, Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16(12), 1243–1251 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. B.M. Richardson, D.G. Wilcox, M.A. Randolph, K.S. Anseth, Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomater. 83, 71–82 (2019)

    Article  CAS  PubMed  Google Scholar 

  138. S.C. Neves, R.F. Pereira, M. Araújo, C.C. Barrias, Bioengineered peptide-functionalized hydrogels for tissue regeneration and repair, in Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair, (Woodhead Publishing, Sawston, Cambridge, UK, 2018), pp. 101–125

    Google Scholar 

  139. R.F. Pereira, A. Sousa, C.C. Barrias, P.J. Bártolo, P.L. Granja, A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater Horiz 5(6), 1100–1111 (2018)

    Article  CAS  Google Scholar 

  140. H.J. Lee, C. Yu, T. Chansakul, N.S. Hwang, S. Varghese, S.M. Yu, et al., Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng. Part A 14(11), 1843–1851 (2008)

    Article  CAS  PubMed  Google Scholar 

  141. C.N. Salinas, K.S. Anseth, Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J. Biomed. Mater. Res. A 90(2), 456–464 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. J.T. Connelly, A.J. Garcia, M.E. Levenston, Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28(6), 1071–1083 (2007)

    Article  CAS  PubMed  Google Scholar 

  143. I. Villanueva, C.A. Weigel, S.J. Bryant, Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater. 5(8), 2832–2846 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. R.F. Pereira, C.C. Barrias, P.J. Bartolo, P.L. Granja, Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater. 66, 282–293 (2018)

    Article  CAS  PubMed  Google Scholar 

  145. P.A. Parmar, L.W. Chow, J.P. St-Pierre, C.M. Horejs, Y.Y. Peng, J.A. Werkmeister, et al., Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54, 213–225 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. G.S. Schultz, A. Wysocki, Interactions between extracellular matrix and growth factors in wound healing. Wound repair and regeneration: Official publication of the Wound Healing Society [and] the European Tissue Repair. Society 17(2), 153–162 (2009)

    Google Scholar 

  148. B.V. Sridhar, N.R. Doyle, M.A. Randolph, K.S. Anseth, Covalently tethered TGF-beta1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J. Biomed. Mater. Res. A 102(12), 4464–4472 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  149. Q. Feng, S. Lin, K. Zhang, C. Dong, T. Wu, H. Huang, et al., Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 53, 329–342 (2017)

    Article  CAS  PubMed  Google Scholar 

  150. L. Bian, D.Y. Zhai, E. Tous, R. Rai, R.L. Mauck, J.A. Burdick, Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32(27), 6425–6434 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. B.V. Sridhar, J.L. Brock, J.S. Silver, J.L. Leight, M.A. Randolph, K.S. Anseth, Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv. Healthc. Mater. 4(5), 702–713 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Government of Iraq for supporting a PhD through a grant provided by the Higher Committee for Development Education Iraq (HCED) and the funding provided by the Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (MRC) Centre for Doctoral Training in Regenerative Medicine (EP/L014904/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Jorge Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishbak, H., Vyas, C., Cooper, G., Peach, C., Pereira, R.F., Bártolo, P.J. (2021). Engineering Natural-Based Photocrosslinkable Hydrogels for Cartilage Applications. In: Bártolo, P.J., Bidanda, B. (eds) Bio-Materials and Prototyping Applications in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-35876-1_7

Download citation

Publish with us

Policies and ethics