Skip to main content

Plant microRNAs Regulate Innate Immunity Through Diverse Mechanisms

  • Chapter
  • First Online:
Plant microRNAs

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Plant miRNAs are a class of small RNAs of 20–24 nucleotides that play broad roles in gene regulation by directing Argonaute proteins to target RNAs based on sequence complementarity. Plant innate immunity consists of two-layered defense mechanisms. In the first line of defense, pathogen molecular pattern triggered immunity (PTI) recognizes conserved pathogen molecules and confers broad-spectrum resistance. Virulent pathogens deliver effectors into plant cells to suppress PTI for successful infection. During plant-pathogen coevolution, the second line of defense evolved, which detects pathogen effectors and triggers a strong but race-specific defense reaction, usually accompanied by rapid programmed cell death, which is termed effector-triggered immunity (ETI). Antiviral RNA silencing is a form of PTI that directly targets viral pathogens. In this chapter, we summarize current knowledge of miRNA-mediated regulation of genes involving antiviral RNA silencing, PTI and ETI, and analyze their conservation in different plant lineages. Future directions for research on elucidating miRNA-mediated regulation of plant immunity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon BG, Tracy WF (1996) Corngrass1 of maize (Zea mays L.) delays development of adult plant resistance to common rust (Puccinia sorghi Schw) and European corn borer (Ostrinia nubilalis hubner). J Hered 87:219–223

    Article  Google Scholar 

  • Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16:529–540

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  CAS  PubMed  Google Scholar 

  • Baldrich P, Kakar K, Sire C, Beatriz Moreno A, Berger A, Garcia-Chapa M, Jose Lopez-Moya J, Luis Riechmann J, San Segundo B (2014) Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. Bmc Genomics 15:1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao D, Ganbaatar O, Cui X, Yu R, Bao W, Falk BW, Wuriyanghan H (2018) Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. Mol Plant Pathol 19:948–960

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Boccara M, Sarazin A, Thiebeauld O, Jay F, Voinnet O, Navarro L, Colot V (2014) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP-and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathogens 10:e1003883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X (2018) The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 9:5080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canto-Pastor A, Santos B, Valli AA, Summers W, Schornack S, Baulcombe DC (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci U S A 116:2755–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YL, Ding XH, Cai M, Zhao J, Lin YJ, Li XH, Xu CG, Wang SP (2007) Expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Carrington JC (2015) Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol 27:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC (1999) Short communication: developmental control of Xa21-mediated disease resistance in rice. Plant J 20:231–236

    Article  CAS  PubMed  Google Scholar 

  • Chavez Montes RA, de Fatima Rosas-Cardenas F, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, Marsch-Martinez N, Meyers BC, Green PJ, de Folter S (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 107:15269–15274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  CAS  PubMed  Google Scholar 

  • Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Liu M, Li X, Li F (2018a) microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. Sci China-Life Sci 61:138–147

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Du Y, Baker B, Li F (2018b) A role for small RNA in regulating innate immunity during plant growth. PLoS Pathogens 14:e1006756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Qi Y (2016) RNAi in plants: an argonaute-centered view. Plant Cell 28:272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei QL, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Wang X, Zhang Q, Fu Y, Feng C, Wang B, Huang L, Kang Z (2014) Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim Biophys Acta 1839:1–12

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Li Y, Ding SW (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19:31–44

    Article  CAS  PubMed  Google Scholar 

  • Headrick JM, Pataky JK (1987) Expression of partial resistance to common rust in sweet corn hybrids at various host growth-stages. Phytopathology 77:454–458

    Article  Google Scholar 

  • Iki T, Clery A, Bologna NG, Sarazin A, Brosnan CA, Pumplin N, Allain FHT, Voinnet O (2018) Structural flexibility enables alternative maturation, ARGONAUTE sorting and activities of miR168, a global gene silencing regulator in plants. Mol Plant 11:1008–1023

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Meng J, Cui J, Sun G, Luan Y (2018) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic Res 5:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Li F, Ding SW (2006) Virus counter defense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Orban R, Baker B (2012a) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70:891–901

    Article  CAS  PubMed  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012b) microRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Castillo-Gonzalez C, Yu B, Zhang X (2017) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670

    Article  CAS  PubMed  Google Scholar 

  • Lu YZ, Feng Z, Bian LY, Xie H, Liang JS (2011) miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol 38:44–53

    Article  CAS  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci U S A 109:2461–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. In: Van Alfen NK (ed) Annual review of phytopathology, vol 51, pp 245–266

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N et al (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) microRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathogens 10:e1004464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pertermann R, Tamilarasan S, Gursinsky T, Gambino G, Schuck J, Weinholdt C, Lilie H, Grosse I, Golbik RP, Pantaleo V et al (2018) A viral suppressor modulates the plant immune response early in infection by regulating microRNA activity. Mbio 9:e00419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooggin MM (2013) How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int J Mol Sci 14:15233–15259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V (2004) The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320:107–120

    Article  CAS  PubMed  Google Scholar 

  • Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proc Natl Acad Sci U S A 113:3389–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Li H-G, Wang Y, Li S, Wang H-L, Yu L, He F, Yang Y, Feng C-H, Shuai P et al (2018) Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma. J Exp Bot 69:5519–5530

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szittya G, Burgyan J (2013) RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol 371:153–181

    CAS  PubMed  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taochy C, Gursanscky NR, Cao J, Fletcher SJ, Dressel U, Mitter N, Tucker MR, Koltunow AMG, Bowman JL, Vaucheret H et al (2017) A genetic screen for impaired systemic RNAi highlights the crucial role of DICER-LIKE 2. Plant Physiol 175:1424–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varallyay E, Havelda Z (2013) Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol Plant Pathol 14:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:484–489

    Article  CAS  PubMed  Google Scholar 

  • Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, He X, Wang X, Zhang S, Guo X (2017) ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. J Exp Bot 68:5895–5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Deng Z, Zhang X, Wang H, Wang Y, Liu X, Liu S, Xu F, Li T, Fu D et al (2018a) Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Hortic Res 5:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Hardcastle TJ, Pastor AC, Yip WH, Tang S, Baulcombe DC (2018b) A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev 32:1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Swiderski MR, Li Y, Jones JDG (2006) The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant Journal 47:829–840

    Article  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L et al (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4:e05733

    Article  PubMed Central  CAS  Google Scholar 

  • Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T et al (2017a) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Hou BH, Lee WC, Lu SH, Yang CJ, Vaucheret H, Chen HM (2017b) DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation. Plant J 90:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Xia R, Xu J, Meyers BC (2017) The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29:1232–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Guo HS (2006) Systemic antiviral silencing in plants. Virus Res 118:1–6

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Meng Y, Wise RP (2014) Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol 201:1396–1412

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Li Y (2018) Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 32:88–99

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Jia T, Chen X (2017) The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong D-H, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA et al (2011) microRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Murat F, Pont C, Langin T, Salse J (2014) Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genom 15:187

    Article  Google Scholar 

  • Zhang Y, Xia R, Kuang H, Meyers BC (2016) The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol 33:2692–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Fu J, Li X, Xu C, Wang S (2009) Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor Appl Genet 119:231–239

    Article  PubMed  Google Scholar 

  • Zheng L, Zhang C, Shi C, Yang Z, Wang Y, Zhou T, Sun F, Wang H, Zhao S, Qin Q et al (2017) Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathogens 13:e1006662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou YM, Wang SF, Zhou YY, Bai JJ, Huang GZ, Liu XT, Zhang YY, Tang DZ, Lu DP (2018) Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 30:2779–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2662014PY008) and the HZAU start fund (2013RC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, F., Wang, Y. (2020). Plant microRNAs Regulate Innate Immunity Through Diverse Mechanisms. In: Miguel, C., Dalmay, T., Chaves, I. (eds) Plant microRNAs. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-35772-6_11

Download citation

Publish with us

Policies and ethics