Skip to main content

Feedback Control of Nonlinear PDEs Using Data-Efficient Reduced Order Models Based on the Koopman Operator

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

In the development of model predictive controllers for PDE-constrained problems, the use of reduced order models is essential to enable real-time applicability. Besides local linearization approaches, proper orthogonal decomposition (POD) has been most widely used in the past in order to derive such models. Due to the huge advances concerning both theory as well as the numerical approximation, a very promising alternative based on the Koopman operator has recently emerged. In this chapter, we present two control strategies for model predictive control of nonlinear PDEs using data-efficient approximations of the Koopman operator. In the first one, the dynamic control system is replaced by a small number of autonomous systems with different yet constant inputs. The control problem is consequently transformed into a switching problem. In the second approach, a bilinear surrogate model is obtained via a convex combination of these autonomous systems. Using a recent convergence result for extended dynamic mode decomposition (EDMD), convergence of the reduced objective function can be shown. We study the properties of these two strategies with respect to solution quality, data requirements, and complexity of the resulting optimization problem using the 1-dimensional Burgers equation and the 2-dimensional Navier–Stokes equations as examples. Finally, an extension for online adaptivity is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, F., Haasdonk, B., Kaulmann, S., Ohlberger, M.: The localized reduced basis multiscale method. Proceedings of ALGORITHMY 2012, 393–403 (2012)

    MATH  Google Scholar 

  2. Arbabi, H., Korda, M., Mezic, I.: A data-driven Koopman model predictive control framework for nonlinear flows (2018). arXiv:1804.05291

  3. Bellmann, R.E., Stuart, E.D.: Applied Dynamic Programming. Princeton University Press, Princeton (2015)

    Google Scholar 

  4. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227(16), 7813–7840 (2008)

    Article  MathSciNet  Google Scholar 

  6. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2), 1–19 (2016)

    Article  Google Scholar 

  7. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22 (2012)

    Article  MathSciNet  Google Scholar 

  8. Çimen, T.: State-dependent Riccati Equation (SDRE) control: a survey. In: IFAC Proceedings Volumes, vol. 41, pp. 3761–3775. IFAC (2008)

    Google Scholar 

  9. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Autom. Control 51(1), 110–115 (2006)

    Article  MathSciNet  Google Scholar 

  10. Egerstedt, M., Wardi, Y., Delmotte, F.: Optimal control of switching times in switched dynamical systems. In: 42nd IEEE International Conference on Decision and Control (CDC), pp. 2138–2143 (2003)

    Google Scholar 

  11. Elliott, D.: Bilinear Control Systems. Springer Science + Business Media, Berlin (2009)

    Chapter  Google Scholar 

  12. Fahl, M.: Trust-region methods for flow control based on reduced order modelling. Ph.D. Thesis, University of Trier (2000)

    Google Scholar 

  13. Flaßkamp, K., Murphey, T., Ober-Blöbaum, S.: Discretized switching time optimization problems. In: 12th European Control Conference, pp. 3179–3184 (2013)

    Google Scholar 

  14. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control, 2nd edn. Springer International Publishing, Berlin (2017)

    Book  Google Scholar 

  15. Hanke, S., Peitz, S., Wallscheid, O., Klus, S., Böcker, J., Dellnitz, M.: Koopman operator based finite-set model predictive control for electrical drives (2018). arXiv:1804.00854

  16. Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26(111701), 1–6 (2014)

    Google Scholar 

  17. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.) Reduction of Large-Scale Systems, vol. 45, pp. 261–306. Springer, Berlin (2005)

    Google Scholar 

  18. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM : A C++ Library for Complex Physics Simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, pp. 1–20 (2007)

    Google Scholar 

  19. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arXiv:1707.0114

  20. Klus, S., Gelß, P., Peitz, S., Schütte, C.: Tensor-based dynamic mode decomposition. Nonlinearity 31(7), 3359–3380 (2018)

    Article  MathSciNet  Google Scholar 

  21. Klus, S., Koltai, P., Schütte, C.: On the numerical approximation of the Perron–Frobenius and Koopman operator. J. Comput. Dyn. 3(1), 51–79 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28(3), 985–1010 (2018)

    Article  MathSciNet  Google Scholar 

  23. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    Article  Google Scholar 

  24. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)

    Article  MathSciNet  Google Scholar 

  25. Korda, M., Mezić, I.: On convergence of extended dynamic mode decomposition to the Koopman operator. J. Nonlinear Sci. 28(2), 687–710 (2018)

    Article  MathSciNet  Google Scholar 

  26. Kunisch, K., Volkwein, S.: Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102(2), 345–371 (1999)

    Article  MathSciNet  Google Scholar 

  27. Lasota, A., Mackey, M.C.: Chaos, fractals, and noise: stochastic aspects of dynamics. Applied Mathematical Sciences, vol. 97, 2nd edn. Springer, Berlin (1994)

    Book  Google Scholar 

  28. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Model order reduction in fluid dynamics: challenges and perspectives. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, pp. 235–273. Springer, Cham (2014)

    MATH  Google Scholar 

  29. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005)

    Article  MathSciNet  Google Scholar 

  30. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2013)

    Article  MathSciNet  Google Scholar 

  31. Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Phys. D Nonlinear Phenom. 197, 101–133 (2004)

    Article  MathSciNet  Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  33. Pardalos, P.M., Yatsenko, V.: Optimization and Control of Bilinear Systems. Springer, Berlin (2008)

    Book  Google Scholar 

  34. Peitz, S.: Controlling nonlinear PDEs using low-dimensional bilinear approximations obtained from data (2018). arXiv:1801.06419

  35. Peitz, S., Dellnitz, M.: A survey of recent trends in multiobjective optimal control surrogate models, feedback control and objective reduction. Math. Comput. Appl. 23(2) (2018)

    Article  MathSciNet  Google Scholar 

  36. Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of PDEs. Automatica 106, 184–191 (2019)

    Article  MathSciNet  Google Scholar 

  37. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2015)

    Article  MathSciNet  Google Scholar 

  38. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Generalizing Koopman Theory to allow for inputs and control. SIAM J. Appl. Dyn. Syst. 17(1), 909–930 (2018)

    Article  MathSciNet  Google Scholar 

  39. Qian, E., Grepl, M., Veroy, K., Willcox, K.: A Certified Trust Region Reduced Basis Approach to PDE-Constrained Optimization. ACDL Technical Report TR16-3 (2016)

    Google Scholar 

  40. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(3), 997–1013 (2005)

    Article  MathSciNet  Google Scholar 

  41. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  42. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  43. Sirovich, L.: Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  Google Scholar 

  44. Stellato, B., Ober-Blöbaum, S., Goulart, P.J.: Optimal control of switching times in switched linear systems. In: IEEE 55th Conference on Decision and Control, pp. 7228–7233 (2016)

    Google Scholar 

  45. Stellato, B., Ober-Blöbaum, S., Goulart, P.J.: Second-order switching time optimization for switched dynamical systems. IEEE Trans. Autom. Control. 62(10), 5407–5414 (2017)

    Article  MathSciNet  Google Scholar 

  46. Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44(1), 83–115 (2009)

    Article  MathSciNet  Google Scholar 

  47. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    Article  MathSciNet  Google Scholar 

  48. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015)

    Article  MathSciNet  Google Scholar 

  49. Zhu, F., Antsaklis, P.J.: Optimal control of hybrid switched systems: a brief survey. Discret. Event Dyn. Syst. 25(3), 345–364 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Peitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peitz, S., Klus, S. (2020). Feedback Control of Nonlinear PDEs Using Data-Efficient Reduced Order Models Based on the Koopman Operator. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_10

Download citation

Publish with us

Policies and ethics