Skip to main content

Movement Characteristics of a Model with Circular Equilibrium

  • Conference paper
  • First Online:
Chaos and Complex Systems

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

In this paper, the dynamical behavior of the Gotthans-Petržela third-order autonomous model is researched. For this purpose, the 0-1 test for chaos and fast approximate entropy is newly applied. Using these tools, the dynamic is quantified and qualified. Depending on the system’s parameters, it is shown that irregular (chaotic) and regular (periodic) movement character appears.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.C. Bao, P.Y. Wu, H. Bao, Q. Xu, M. Chen, Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos Solitons Fractals 106, 161–170 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. L.S. Block, W.A. Coppel, Dynamics in One Dimension (Springer, Berlin, 1992)

    Book  Google Scholar 

  3. J.S.A. Eyebe Fouda, B. Bodo, G.M.D Djeufa, S.L. Sabat, Experimental chaos detection in the Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 33, 259–269 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Gotthans, J. Petržela, New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81, 1143–1149 (2015)

    Article  MathSciNet  Google Scholar 

  5. T. Gotthans, J.C. Sprott, J. Petržela, Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. A 460, 603–611 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. G.A. Gottwald, I. Melbourne, On the implementation of the 0-1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.A. Gottwald, I. Melbourne, On the validity of the 0-1 test for chaos. Nonlinearity 22, 1367–1382 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Harris, C.R. Bowen, H.A. Kim, G. Litak, Dynamics of a vibrational energy harvester with a bistable beam: voltage response identification by multiscale entropy and “0-1” test. Eur. Phys. J. Plus 131 (2016)

    Google Scholar 

  10. S. Jafari, J.C. Sprott, S. Mohammad Reza Hashemi Golpayegani, Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.H. Khondekar, D.N. Ghosh, K. Ghosh, A.K. Bhattacharjee, Complexity in solar irradiance from the earth radiation budget satellite. IEEE Syst. J. 9, 487–494 (2015)

    Article  ADS  Google Scholar 

  12. S.T. Kingni, V.-T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process 35, 1933–1948 (2016)

    Article  MathSciNet  Google Scholar 

  13. M. Lampart, J. Zapoměl, Dynamical properties of a non-autonomous bouncing ball model forced by non-harmonic excitation. Math. Methods Appl. Sci. 39, 4923–4929 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Lampart, J. Zapoměl, Vibrations attenuation of a system excited by unbalance and the ground movement by an impact element. Appl. Math. Nonlinear Sci. 1, 603–616 (2016)

    Article  MathSciNet  Google Scholar 

  15. G. Litak, D. Bernardini, A. Syta, G. Rega, A. Rysak, Analysis of chaotic non-isothermal solutions of thermomechanical shape memory oscillators. Eur. Phys. J. Spec. Top. 222, 1637–1647 (2013)

    Article  Google Scholar 

  16. G. Litak, M.I. Friswell, S. Adhikari, Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51, 1017–1025 (2016)

    Article  MathSciNet  Google Scholar 

  17. T. Martinovič, Chaos01: 0-1 Test for Chaos. R package version 1.1.1. (2018), https://CRAN.R-project.org/package=Chaos01. Cited 20 Oct 2018

  18. T. Martinovič, Chaotic behaviour of noisy traffic data. Math. Methods Appl. Sci. 41, 2287–2293 (2018)

    MathSciNet  MATH  Google Scholar 

  19. M. Melosik, W. Marszalek, Using the 0-1 test for chaos to detect hardware trojans in chaotic bit generators. Electron. Lett. 52, 919–921 (2016)

    Article  Google Scholar 

  20. S. Mobayen, S. Vaidyanathan, A. Sambas, S. Kaçar, Ü. Çavuşoğlu, A novel chaotic system with boomerang-shaped equilibrium, its circuit implementation and application to sound encryption. Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 1–12 (2018)

    Article  Google Scholar 

  21. S. Mobayen, C.K. Volos, S. Kaçar, Ü. Çavuşoğlu, New class of chaotic systems with equilibrium points like a three-leaved clover. Nonlinear Dyn. 91, 939–956 (2017)

    Article  Google Scholar 

  22. S. Panahi, J.C. Sprott, S. Jafari, Two simplest quadratic chaotic maps without equilibrium. Int. J. Bifurc. Chaos Appl. Sci. Eng. 28 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Petržela, M. Guzan, Analog implementations of dynamical systems with equilibria degenerated into plane objects, in 2016 39th International Conference on Telecommunications and Signal Processing (TSP), IEEE (2016)

    Google Scholar 

  24. V.-T. Pham, S. Jafari, X. Wang, J. Ma, A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. V.-T. Pham, C. Volos, S. Jafari, S. Vaidyanathan, T. Kapitaniak, X. Wang, A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. V.-T. Pham, C. Volos, T. Kapitaniak, S. Jafari, X. Wang, Dynamics and circuit of a chaotic system with a curve of equilibrium points. Int. J. Electron. 1–13 (2017)

    Google Scholar 

  27. S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Sambas, S. Vaidyanathan, M. Mamat, M.A. Mohamed, W.S. Mada Sanjaya, A new chaotic system with a pear-shaped equilibrium and its circuit simulation. Int. J. Electr. Comput. Eng. 8, 4951–4958 (2018)

    Google Scholar 

  29. M.A. Savi, F.H.I. Pereira-Pinto, F.M. Viola, A.S. de Paula, D. Bernardini, G. Litak, G. Rega, Using 0-1 test to diagnose chaos on shape memory alloy dynamical systems. Chaos Solitons Fractals 103, 307–324 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.P. Singh, B.K. Roy, Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik 145, 209–217 (2017)

    Article  ADS  Google Scholar 

  31. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018)

    Google Scholar 

  32. The MathWorks, Inc., Matlab, Natick (Massachusetts, United States, 2015)

    Google Scholar 

  33. J. Tomčala, Acceleration of time series entropy algorithms. J. Supercomput. 75, 1443–1454 (2018)

    Article  Google Scholar 

  34. J. Tomčala, TSEntropies: Time Series Entropies. R package version 0.9. (2018), https://CRAN.R-project.org/package=TSEntropies. Cited 15 Mar 2019

  35. S. Vaidyanathan, A. Sambas, S. Kacar, Ü. Çavuşoğlu, A new three-dimensional chaotic system with a cloud-shaped curve of equilibrium points, its circuit implementation and sound encryption. Int. J. Model. Identif. Control 30, 184–196 (2018)

    Article  Google Scholar 

  36. S. Vaidyanathan, A. Sambas, M. Mamat, A new chaotic system with axe-shaped equilibrium, its circuit implementation and adaptive synchronization. Arch. Control Sci. 28, 443–462 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science—LQ1602”; by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center—LM2015070”; by the Technology Agency of the Czech Republic (by the projects TN01000007 “National Centre for Energy”, TK02030039 “Energy System for Grids”, and TJ02000157 “Optimization of the electrical distribution system operating parameters using artificial intelligence”); by SGC grant No. SP2019/125 “Qualification and quantification tools application to dynamical systems”, VŠB—Technical University of Ostrava, Czech Republic, Grant of SGS No. SP2019/84, VŠB—Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judita Nagyová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lampart, M., Nagyová, J. (2020). Movement Characteristics of a Model with Circular Equilibrium. In: Stavrinides, S., Ozer, M. (eds) Chaos and Complex Systems. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-35441-1_5

Download citation

Publish with us

Policies and ethics