Skip to main content

Computational Study of Shuangancistrotectorine A: A Naphthylisoquinoline Alkaloid with Antimalarial Activity

  • Conference paper
  • First Online:
Advances in Quantum Systems in Chemistry, Physics, and Biology (QSCP 2018)

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 32))

Abstract

Shuangancistrotectorines A, B, C, D and E are naphthylisoquinoline alkaloids isolated from the twigs of Ancistrocladus tectorius, an indigenous plant in China and South East Asia. Their molecules are all C2-symmetric, i.e., they consist of two identical units. Each unit contains a naphthalene moiety and an isoquinoline moiety. Shuangancistrotectorine B and E are atropo-diastereomers of shuangancistrotectorine A and D respectively. Shuangancistrotectorine A, B and D exhibit very good and specific antimalarial activity, with shuangancistrotectorine A being the most active. The current work presents the results of a detailed conformational study of shuangancistrotectorine A, performed in vacuo and in three solvents with different polarities and different H-bonding abilities (chloroform, acetonitrile and water), using two levels of theory, HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p). Particular attention is given to intramolecular hydrogen bonds’ patterns. The results show that intramolecular hydrogen bonds are the dominant factor influencing conformational preferences and energies, and also the other computable molecular properties. The mutual orientation of the moieties is also an energy-influencing factor, and the results show that all the moieties prefer to be perpendicular to each other. Comparisons with the results of other previously-investigated dimeric naphthylisoquinoline alkaloids are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO 018 https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1

  2. Xu M, Bruhn T, Hertlein B, Brun R, Stich A, Wu J, Bringmann G (2010) Chem Eur J 16:4206–4216

    Article  CAS  PubMed  Google Scholar 

  3. Mammino L, Bilonda MK (2016) Theor Chem Acc 135:101. https://doi.org/10.1007/s00214-016-1843-7

    Article  CAS  Google Scholar 

  4. Bilonda MK, Mammino L (2018) In: Wang Y, Thachuk M, Krems R, Maruani J (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Springer, Berlin, pp 305–328

    Chapter  Google Scholar 

  5. Mammino L, Bilonda MK (2017) In: Tadjer A, Pavlov R, Maruani J, Brändas EJ, Delgado-Barrio G (eds) Quantum systems in physics, chemistry, and biology—advances in concepts and applications, Springer, pp 303–316

    Google Scholar 

  6. Bilonda MK, Mammino L (2018) Theor Chem Acc 137:139. https://doi.org/10.1007/s00214-018-2323-z

    Article  CAS  Google Scholar 

  7. Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V (2013) Chem Eur J 19:916–923

    Article  CAS  PubMed  Google Scholar 

  8. Boyd MR (1994) J Med Chem 37:1740–1745

    Article  CAS  PubMed  Google Scholar 

  9. Becke AD (1993) J Chem Phys 98:5648–5662

    Article  CAS  Google Scholar 

  10. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  11. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  12. Mammino L, Kabanda MM (2012) Int J Quantum Chem 112:2650–2658

    Article  CAS  Google Scholar 

  13. Irikura K, Johnson RD III, Kacker RN (2005) J Phys Chem A 109:8430–8437

    Article  CAS  PubMed  Google Scholar 

  14. Barone V, Cossi M (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  15. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  16. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  17. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  18. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  19. Tomasi J, Mennucci B, Cancès E, (1999) (Theochem) 464:211–226

    Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh

    Google Scholar 

  21. Pascual-Ahuir JL, Silla E (1990) J Comput Chem 11:1047–1047

    Article  CAS  Google Scholar 

  22. Silla E, Villar F, Nilsson O, Pascual-Ahuir JL, Tapia O (1990) J Mol Graph 8:168–172

    Article  CAS  PubMed  Google Scholar 

  23. Silla E, Tunon I, Pascual-Ahuir JL (1991) J Comput Chem 12:1077–1088

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian (2013), Gaussian 09, Revision E.01, Inc., Wallingford CT

    Google Scholar 

  25. Buemi G, Zuccarello F (2002) J Mol Struct (Theochem) 581:71–85

    Article  CAS  Google Scholar 

  26. Simperler A, Lampert H, Mikenda W (1998) J Mol Struct 448:191–199

    Article  CAS  Google Scholar 

  27. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  28. Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4017–4925

    Article  Google Scholar 

  29. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  30. Nolasco MM, Ribeiro-Claro PJA (2005) Chem Phys Chem 6:496–502

    Article  CAS  PubMed  Google Scholar 

  31. Buemi G (2002) Chem Phys 282:181–195

    Article  CAS  Google Scholar 

  32. Posokhov Y, Gorski A, Spanget-Larsen J, Duus F, Hansen PE, Waluk (2004) J Chem Phys Chem 5:495–502

    Google Scholar 

  33. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  PubMed  Google Scholar 

  34. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890–10898

    Article  CAS  PubMed  Google Scholar 

  35. Schalley CA (2009) A. Springer, Mass spectrometry and gas-phase chemistry of non-covalent complexes. Wiley, Hoboken (NJ), p 17

    Google Scholar 

  36. Mammino L (2017) Molecules 22:1294. https://doi.org/10.3390/molecules22081294

    Article  CAS  PubMed Central  Google Scholar 

  37. Gu Q, Trindle C, Knee JL (2012) J Chem Phys 137:091101

    Article  PubMed  Google Scholar 

  38. Dasa M, Ghoshb SK (2017) J Chem Sci 129(7):975–981

    Article  Google Scholar 

  39. Chem3D Ultra Version 8.0.3., ChemOffice, Cambridge Software (2003)

    Google Scholar 

  40. Nishiyama Y, Langan P, Chanzy H (2002) J Am Chem Soc 124:9074–9082

    CAS  PubMed  Google Scholar 

  41. López de la Paz M, Ellis G, Pérez M, Perkins J, Jiménez-Barbero J, Vicent C (2002) Eur J Org Chem 5:840–855

    Google Scholar 

  42. Deshmukh MM, Bartolotti LJ, Gadre SR (2008) J Chem Phys. A 112:312–321

    Article  CAS  Google Scholar 

  43. Parra RD, Gong B, Zeng XC (2001) J Chem Phys 115(13):6036–6041

    Article  CAS  Google Scholar 

  44. Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B (2002) J Am Chem Soc 124:14846–14847

    Article  CAS  PubMed  Google Scholar 

  45. Bushelyev SN, Stepanov NF (1989) Elektronnaya Struktura y Biologhicheskaya Aktivnost Molecul. Khimiya, Snaye, Moscow

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centre for High Performance Computing (South Africa) for providing computational resources used to conduct this work. M. K. Bilonda is grateful to the National Research Foundation (NRF) of South Africa for a bursary to support her PhD studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 789 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilonda, M.K., Mammino, L. (2020). Computational Study of Shuangancistrotectorine A: A Naphthylisoquinoline Alkaloid with Antimalarial Activity. In: Mammino, L., Ceresoli, D., Maruani, J., Brändas, E. (eds) Advances in Quantum Systems in Chemistry, Physics, and Biology. QSCP 2018. Progress in Theoretical Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-34941-7_10

Download citation

Publish with us

Policies and ethics