Skip to main content
Log in

Computational study of mbandakamine A: a dimeric naphthylisoquinoline alkaloid with antimalarial activity

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Mbandakamine A is one of the naphthylisoquinoline alkaloids isolated from the leaves of Congolese Ancistrocladus species and shows good antimalarial activity. It is also one of the first discovered dimeric naphthylisoquinolines with an unsymmetrically coupled central biaryl axis. The molecule consists of two units, with each unit containing one naphthalene moiety and one isoquinoline moiety. The substituents on the rings comprise four OH groups and four OCH3 groups. Each OH group can be H-bond donor, either to the methoxy group in the same moiety or to another OH from another moiety; they can also be H-bond acceptors to another OH. Conformers can have up to three O–H···O intramolecular hydrogen bonds (IHBs) simultaneously, O–H···N or N–H···O and also other H-bond-type interactions (O–H···π, C–H···O and C–H···N). A detailed conformational study was performed in vacuo and in three solvents with different polarities and different H-bonding abilities (chloroform, acetonitrile and water), using two levels of theory, HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p). Because IHBs have a relevant role in determining conformational preferences, all combinations of IHBs and IHB-type interactions were considered, for a total of 107 conformers. The results highlight the stabilizing effect of the various types of IHBs and also of the mutual orientation of the four aromatic moieties and of the presence of stacking interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Health Organization (2016) World malaria report 2016. http://www.who.int/malaria/media/world-malaria-report-2016/en/. Accessed 15 June 2018

  2. Bringmann G, Lombe BK, Steinert C, Ioset KN, Brun R, Turini F, Heubl G, Mudogo V (2013) Org Lett 15:2590–2593

    Article  CAS  Google Scholar 

  3. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  4. Cornilescu G, Hu J-S, Bax A (1999) J Am Chem Soc 121:2949–2950

    Article  CAS  Google Scholar 

  5. Joesten MD, Schaad LJ (1974) Hydrogen bonding. Marcel Dekker, New York

    Google Scholar 

  6. Schuster P, Zundel G, Sandorfy C (eds) (1976) The hydrogen bond: recent developments in theory and experiments. North-Holland, Amsterdam

    Google Scholar 

  7. Scheiner S, Maksic ZB (eds) (1991) Theoretical models of chemical bonding, vol 4. Springer, Berlin

    Google Scholar 

  8. Naray-Szabo G, Surjan PR, Angyan JG (1987) Applied quantum chemistry. Akademiai Kiado, Budapest

    Google Scholar 

  9. Langoor HM, van der Maas HJ (1997) J Mol Struct 403:213–229

    Article  CAS  Google Scholar 

  10. Lipkowski P, Koll A, Karpfen A, Wolschann P (2002) Chem Phys Lett 360:256–263

    Article  CAS  Google Scholar 

  11. Latimer WM, Rodebush WH (1920) J Am Chem Soc 42:1419–1433

    Article  CAS  Google Scholar 

  12. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  13. Kojić-Prodić B, Molčanov K (2008) Acta Chim Slov 5:692–708

    Google Scholar 

  14. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google Scholar 

  15. Braga D, Grepioni F, Orpen AG (eds) (1999) Crystal engineering: from molecules and crystals to materials. Kluwer Academic Publishers, Dordrecht, Germany

    Google Scholar 

  16. Desiraju GR (1989) The design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  17. Subramanian S, Zaworodko MJ (1994) Coord Chem Rev 137:357

    Article  CAS  Google Scholar 

  18. Cabane B, Vuilleumier RCR (2005) Geosciences 337:159–171

    Article  CAS  Google Scholar 

  19. Loftsson T, Brewster ME (2008) Int J Pharm 354:248–254

    Article  CAS  Google Scholar 

  20. Xie M-X, Yuan L (2002) Acta Part A 58:2817–2826

    Article  Google Scholar 

  21. Song Y, Zhang W, Ji H, Zhou Y, Zhu J, Lu J (2001) Zhongguo Yaowu Huaxue Zazhi 211:311

    Google Scholar 

  22. Schlucker S, Ranjan KS, Asthana BP, Popp J, Kiefer WJ (2001) Phys Chem A 105:9983–9989

    Article  Google Scholar 

  23. Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS (2013) J Mater Chem B 1:3742–3753

    Article  Google Scholar 

  24. Pierce AC, Sandretto KL, Bemis GW (2002) Proteins 49:567–576

    Article  CAS  Google Scholar 

  25. Sarkhel S, Desiraju GR (2004) Proteins 54:247–259

    Article  CAS  Google Scholar 

  26. Pierce AC, Haar E, Binch HM, Kay DP, Patel SR, Li P (2005) J Med Chem 48:1278–1281

    Article  CAS  Google Scholar 

  27. Taylor R, Kennard O (1982) J Am Chem Soc 104:5063–5070

    Article  CAS  Google Scholar 

  28. Wahl MC, Sundaralingam M (1997) TIBS 22:97–102

    CAS  PubMed  Google Scholar 

  29. Desiraju GR (1996) Acc Chem Res 29:441–449

    Article  CAS  Google Scholar 

  30. Steiner TJ (2000) Phys Chem A 104:433–435

    Article  CAS  Google Scholar 

  31. Meadows ES, De Wall SL, Barbour LJ, Fronczek FR, Kim MS, Gokel GWJ (2000) Am Chem Soc 122:3325–3335

    Article  CAS  Google Scholar 

  32. Mammino L, Kabanda MM (2012) Int J Quantum Chem 112:2650–2658

    Article  CAS  Google Scholar 

  33. Scheiner S, Grabowski SJ, Kar T (2001) J Phys Chem A 105:10607–10612

    Article  CAS  Google Scholar 

  34. Erickson JA, McLoughlin JIJ (1995) Org Chem 60:1626–1631

    Article  CAS  Google Scholar 

  35. Scheiner S (2000) C-H··· O hydrogen bonding. In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 6. JAI Press, Stamford, p 159

    Google Scholar 

  36. Lee KM, Chang HC, Jiang JC, Chen JCC, Kao HE, Lin SH, Lin IJBJ (2003) Am Chem Soc 125:12358–12364

    Article  CAS  Google Scholar 

  37. Manikandan K, Ramakumar S (2004) Proteins Struct Funct Genet 56:768–781

    Article  CAS  Google Scholar 

  38. Singh SK, Babu MM, Balaram P (2003) Proteins Struct Funct Genet 51:167–171

    Article  CAS  Google Scholar 

  39. Derewenda ZS, Lee L, Derewenda U (1995) J Mol Biol 252:248–262

    Article  CAS  Google Scholar 

  40. Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW (2000) Proc Natl Acad Sci USA 97:10371–10376

    Article  CAS  Google Scholar 

  41. Silski AM, Brown RD, Petersen JP, Coman JM, Turner DA, Smith ZM, Corcelli SA, Poutsma JC, Kandel SA (2017) J Phys Chem C 121:21520–21526

    Article  CAS  Google Scholar 

  42. Aravinda S, Shamala N, Bandyopadhyay A, Balaram P (2003) J Am Chem Soc 125:15065–15075

    Article  CAS  Google Scholar 

  43. Senes A, Ubarretxena-Belandia I, Engelman DM (2001) Proc Natl Acad Sci USA 98:9056–9061

    Article  CAS  Google Scholar 

  44. Babu MM, Singh SK, Balaram PJ (2002) Mol Biol 322:871–880

    Article  Google Scholar 

  45. Ramagopal UA, Ramakumar S, Sahal D, Chauhan VS (2001) Proc Natl Acad Sci USA 98:870–874

    Article  CAS  Google Scholar 

  46. Petrella R, Karplus M (2004) Proteins Struct Funct Genet 54:716–726

    Article  CAS  Google Scholar 

  47. Scheiner S (2005) J Phys Chem B 109:16132–16141

    Article  CAS  Google Scholar 

  48. Klaholz BP, Moras D (2002) Structure 10:1197–1204

    Article  CAS  Google Scholar 

  49. Mammino L, Bilonda MK (2016) Theor Chem Acc. https://doi.org/10.1007/s00214-016-1843-7

    Article  Google Scholar 

  50. Mammino L, Bilonda MK (2017) In: Tadjer A, Pavlov R, Maruani J, Brändas EJ, Delgado-Barrio G (eds) Quantum systems in physics, chemistry, and biology. Springer, Berlin, pp 303–316

    Chapter  Google Scholar 

  51. Bilonda MK, Mammino L (2018) In: Wang YA, Thachuk M, Krems R, Maruani J (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Springer, Berlin, pp 305–328

    Chapter  Google Scholar 

  52. Becke AD (1993) J Chem Phys 98:5648–5662

    Article  CAS  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  54. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  55. Mammino L, Kabanda MM (2012) Int J Quantum Chem 112:2650–2658

    Article  CAS  Google Scholar 

  56. Irikura K, Johnson RD III, Kacker RN (2005) J Phys Chem A 109:8430–8437

    Article  CAS  Google Scholar 

  57. Barone V, Cossi M (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  58. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  59. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  60. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  61. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  62. Tomasi J, Mennucci B, Cancès E (1999) Theochem 464:211–226

    Article  CAS  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh

    Google Scholar 

  64. Pascual-Ahuir JL, Silla E (1990) J Comput Chem 11:1047

    Article  CAS  Google Scholar 

  65. Silla E, Villar F, Nilsson O, Pascual-Ahuir JL, Tapia O (1990) J Mol Graph 8:168–172

    Article  CAS  Google Scholar 

  66. Silla E, Tunon I, Pascual-Ahuir JL (1991) J Comput Chem 12:1077–1088

    Article  CAS  Google Scholar 

  67. Chem3D Ultra version 8.0.3., ChemOffice, Cambridge Software (2003)

  68. Chemcraftprog.com. Accessed 10 Feb 2018

  69. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/arenes.htm#napth. Accessed 7 Apr 2018

  70. Gilli P, Gilli G (2010) J Mol Struct 972:2–10

    Article  CAS  Google Scholar 

  71. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  72. Poater J, Fradera X, Solà M, Duran M, Simon S (2003) Chem Phys Lett 369:248–255

    Article  CAS  Google Scholar 

  73. Steiner T (2000) Angew Chem Int Ed 41:48–76

    Article  Google Scholar 

  74. Mammino L (2009) Chem Phys Lett 473:354–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Mammino.

Additional information

Published as part of the special collection of articles “CHITEL 2017 - Paris - France”.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilonda, M.K., Mammino, L. Computational study of mbandakamine A: a dimeric naphthylisoquinoline alkaloid with antimalarial activity. Theor Chem Acc 137, 139 (2018). https://doi.org/10.1007/s00214-018-2323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2323-z

Keywords

Navigation