Skip to main content

Network-Based Imaging and Connectomics

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 974 Accesses

Abstract

The field of functional neurosurgery has evolved in tandem with advances in imaging techniques, from the invention of X-rays leading to ventriculography and angiography, which saw the development of stereotactic frames, to the development of conventional MRI techniques, which have allowed for direct surgical targeting and verification based on directly visualised anatomy. Developments in MRI connectivity methods have enabled the exploration of neural networks modulated by surgery. These techniques have been exploited to identify and segment targets not readily visible on conventional MRI, refine existing targets by mapping out functional subzones within the target and explore new diagnostic and therapeutic biomarkers. This chapter presents an overview of these connectivity techniques, with an exemplary focus on the application of diffusion connectivity in tremor surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagmann P, Cammoun L, Gigandet X, Gerhard S, Grant PE, Wedeen V, et al. MR connectomics: principles and challenges. J Neurosci Methods. 2010;194(1):34–45.

    Article  PubMed  Google Scholar 

  2. Marcus DS, Harwell J, Olsen T, Hodge M, Glasser MF, Prior F, et al. Informatics and data mining tools and strategies for the human connectome project. Front Neuroinform. Frontiers;. 2011;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al. The human connectome project: a data acquisition perspective. NeuroImage. 2012;62(4):2222–31.

    Article  PubMed  Google Scholar 

  4. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markram H. The human brain project. Sci Am. 2012;306(6):50–5.

    Article  PubMed  Google Scholar 

  6. Mott MC, Gordon JA, Koroshetz WJ. The NIH BRAIN initiative: advancing neurotechnologies, integrating disciplines. PLoS Biol. 2018;16(11):e3000066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, et al. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82(4):358–63.

    Article  CAS  PubMed  Google Scholar 

  8. Zrinzo L, Yoshida F, Hariz MI, Thornton J, Foltynie T, Yousry TA, et al. Clinical safety of brain magnetic resonance imaging with implanted deep brain stimulation hardware: large case series and review of the literature. World Neurosurg. 2011;76(1–2):164–72.

    Article  PubMed  Google Scholar 

  9. Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tandé D, et al. A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. NeuroImage. 2007;34(2):618–38.

    Article  PubMed  Google Scholar 

  11. Bour LJ, Contarino MF, Foncke EMJ, Bie RMA, Munckhof P, Speelman JD, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir. 2010;152(12):2069–77.

    Article  PubMed  Google Scholar 

  12. Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, et al. Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord. 2012;27(7):874–9.

    Article  PubMed  Google Scholar 

  13. Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, Candelario J, Akram H, Martinez-Torres I, et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85(12):1419–25.

    Article  PubMed  Google Scholar 

  14. Nakajima T, Zrinzo L, Foltynie T, Olmos IA, Taylor C, Hariz MI, et al. MRI-guided subthalamic nucleus deep brain stimulation without microelectrode recording: can we dispense with surgery under local anaesthesia. Stereotact Funct Neurosurg. 2011;89(5):318–25.

    Article  PubMed  Google Scholar 

  15. Richardson RM, Ostrem JL, Starr PA. Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg. 2009;87(5):297–303.

    Article  PubMed  Google Scholar 

  16. Van Horn G, Hassenbusch SJ, Zouridakis G, Mullani NA, Wilde MC, Papanicolaou AC. Pallidotomy: a comparison of responders and nonresponders. Neurosurgery. 2001;48(2):263–71; discussion 271–3.

    PubMed  Google Scholar 

  17. Schiff SJ, Dunagan BK, Worth RM. Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. J Neurosurg. 2002;97(1):119–28.

    Article  PubMed  Google Scholar 

  18. Rodriguez-Oroz MC, Rodriguez M, Leiva C, Rodriguez-Palmero M, Nieto J, Garcia-Garcia D, et al. Neuronal activity of the red nucleus in Parkinson’s disease. Mov Disord. 2008;23(6):908–11.

    Article  PubMed  Google Scholar 

  19. Ramnani N, Behrens TEJ, Penny W, Matthews PM. New approaches for exploring anatomical and functional connectivity in the human brain. BPS. 2004;56(9):613–9.

    Google Scholar 

  20. Zhang D, Raichle ME. Disease and the brain’s dark energy. Nat Rev Neurol. Nature Publishing Group;. 2010;6(1):15–28.

    Article  PubMed  Google Scholar 

  21. Weise LM, Seifried C, Eibach S, Gasser T, Roeper J, Seifert V, et al. Correlation of active contact positions with the electrophysiological and anatomical subdivisions of the subthalamic nucleus in deep brain stimulation. Stereotact Funct Neurosurg. Karger Publishers;. 2013;91(5):298–305.

    Article  PubMed  Google Scholar 

  22. Johnsen EL, Sunde N, Mogensen PH, Østergaard K. MRI verified STN stimulation site – gait improvement and clinical outcome. Eur J Neurol. 2010;17(5):746–53.

    Article  CAS  PubMed  Google Scholar 

  23. Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 2007;25(10):1347–57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. Frontiers;. 2010;4:19.

    PubMed  PubMed Central  Google Scholar 

  25. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. BPS. 2007;62(5):429–37.

    Google Scholar 

  27. van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci. Society for Neuroscience;. 2008;28(43):10844–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. Oxford University Press;. 2009;19(1):72–8.

    Article  PubMed  Google Scholar 

  29. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A. National Acad Sciences;. 2009;106(6):2035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME. Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex. Oxford University Press;. 2010;20(5):1187–94.

    Article  PubMed  Google Scholar 

  31. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  32. Leopold DA, Murayama Y, Logothetis NK. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex. 2003;13(4):422–33.

    Article  PubMed  Google Scholar 

  33. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, et al. EEG-correlated fMRI of human alpha activity. NeuroImage. 2003;19(4):1463–76.

    Article  CAS  PubMed  Google Scholar 

  34. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A. National Acad Sciences;. 2008;105(41):16039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Munck JC, Gonçalves SI, Mammoliti R, Heethaar RM, Lopes da Silva FH. Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. NeuroImage. 2009;47(1):69–76.

    Article  PubMed  Google Scholar 

  36. Szewczyk-Krolikowski K, Menke RAL, Rolinski M, Duff E, Salimi-Khorshidi G, Filippini N, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology. 2014;83(3):208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baggio H-C, Sala-Llonch R, Segura B, Martí MJ, Valldeoriola F, Compta Y, et al. Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp. 2014;35(9):4620–34.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Akram H, Wu C, Hyam J, Foltynie T, Limousin P, De Vita E, et al. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson’s disease. Mov Disord. 2017;32(6):874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, et al. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain. Oxford University Press;. 2014;137(Pt 4):1130–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. Network modelling methods for FMRI. NeuroImage. 2011;54(2):875–91.

    Article  PubMed  Google Scholar 

  42. Hoy AR, Alexander AL. Diffusion MRI, Brain mapping an encyclopedic reference, vol. 1: Elsevier; 2015. 6 p.

    Google Scholar 

  43. van der Kolk AG, Hendrikse J, Zwanenburg JJM, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol. 2013;82(5):708–18.

    Article  PubMed  Google Scholar 

  44. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40.

    Article  PubMed  Google Scholar 

  45. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WYI, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 2008;41(4):1267–77.

    Article  CAS  PubMed  Google Scholar 

  46. Wu Y-C, Alexander AL. Hybrid diffusion imaging. NeuroImage. 2007;36(3):617–29.

    Article  PubMed  Google Scholar 

  47. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med. Wiley-Blackwell;. 2004;52(5):965–78.

    Article  PubMed  Google Scholar 

  48. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000–16.

    Article  PubMed  Google Scholar 

  49. Wang X, Cusick MF, Wang Y, Sun P, Libbey JE, Trinkaus K, et al. Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. NMR Biomed. Wiley-Blackwell;. 2014;27(7):843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  51. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577–82.

    Article  PubMed  Google Scholar 

  52. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. Wiley Subscription Services, Inc., A Wiley Company;. 2003;50(5):1077–88.

    Article  CAS  PubMed  Google Scholar 

  53. Dyrby TB, Søgaard LV, Parker GJ, Alexander DC, Lind NM, Baaré WFC, et al. Validation of in vitro probabilistic tractography. NeuroImage. 2007;37(4):1267–77.

    Article  PubMed  Google Scholar 

  54. Johansen-Berg H. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex. 2004;15(1):31–9.

    Article  PubMed  Google Scholar 

  55. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750–7.

    Article  CAS  PubMed  Google Scholar 

  56. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, et al. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage. Elsevier B.V;. 2012;60:83–94.

    Article  PubMed  Google Scholar 

  58. Chowdhury R, Lambert C, Dolan RJ, Düzel E. Parcellation of the human substantia nigra based on anatomical connectivity to the striatum. NeuroImage. 2013;81:191–8.

    Article  PubMed  Google Scholar 

  59. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  60. Behrens TEJ, Jbabdi S. MR diffusion tractography. In: Diffusion MRI: Elsevier; 2009. p. 333–51.

    Chapter  Google Scholar 

  61. Petersen MV, Lund TE, Sunde N, Frandsen J, Rosendal F, Juul N, et al. Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. J Neurosurg. 2017;126:1657–68.

    Article  PubMed  Google Scholar 

  62. Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, et al. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun. Nature Publishing Group;. 20177;8(1):1349.

    Google Scholar 

  63. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage. 2013;80:125–43.

    Article  PubMed  Google Scholar 

  64. Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. NeuroImage. 2017;158:332–45.

    Article  PubMed  Google Scholar 

  65. May A. A review of diagnostic and functional imaging in headache. J Headache Pain. 2006;7(4):174–84.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  67. Tyagi H, Apergis-Schoute AM, Akram H, Foltynie T, Limousin P, Drummond LM, et al. A randomised trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive compulsive disorder: clinical and imaging evidence for dissociable effects. Biol Psychiatry. Elsevier;. 2019;85(9):726–34.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anderson JS, Dhatt HS, Ferguson MA, Lopez-Larson M, Schrock LE, House PA, et al. Functional connectivity targeting for deep brain stimulation in essential tremor. Am J Neuroradiol. American Society of Neuroradiology;. 2011;32(10):1963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anthofer J, Steib K, Fellner C, Lange M, Brawanski A, Schlaier J. The variability of atlas-based targets in relation to surrounding major fibre tracts in thalamic deep brain stimulation. Acta Neurochir. Springer Vienna; 2014;156(8):1497–504; discussion 1504.

    Article  PubMed  Google Scholar 

  70. Pahwa R, Lyons KE, Wilkinson SB, Tröster AI, Overman J, Kieltyka J, et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord. 2001;16(1):140–3.

    Article  CAS  PubMed  Google Scholar 

  71. Berk C, Carr J, Sinden M, Martzke J, Honey CR. Assessing tremor reduction and quality of life following thalamic deep brain stimulation for the treatment of tremor in multiple sclerosis. J Neurol Neurosurg Psychiatry. BMJ Group; 2004;75(8):1210; authorreply 1210–1.

    Google Scholar 

  72. Benabid AL, Pollak P, Hommel M, Gaio JM, de Rougemont J, Perret J. [Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus]. Rev Neurol (Paris). 1989;145(4):320–3.

    Google Scholar 

  73. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.

    Article  CAS  PubMed  Google Scholar 

  74. Pollak P, Benabid AL, Gervason CL, Hoffmann D, Seigneuret E, Perret J. Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol. 1993;60:408–13.

    CAS  PubMed  Google Scholar 

  75. Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J. Chronic VIM thalamic stimulation in Parkinson’s disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien). 1993;58:39–44.

    CAS  Google Scholar 

  76. Schuurman PR, Bosch DA, Merkus MP, Speelman JD. Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression. Mov Disord. 2008;23(8):1146–53.

    Article  PubMed  Google Scholar 

  77. Hariz MI, Krack P, Alesch F, Augustinsson L-E, Bosch A, Ekberg R, et al. Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up. J Neurol Neurosurg Psychiatry. 2007;79(6):694–9.

    Article  PubMed  Google Scholar 

  78. Murata J-I, Kitagawa M, Uesugi H, Saito H, Iwasaki Y, Kikuchi S, et al. Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor. J Neurosurg. 2003;99(4):708–15.

    Article  PubMed  Google Scholar 

  79. Blomstedt P, Sandvik U, Fytagoridis A, Tisch S. The posterior subthalamic area in the treatment of movement disorders: past, present, and future. Neurosurgery. 2009;64(6):1029–38; discussion 1038–42.

    Article  PubMed  Google Scholar 

  80. Blomstedt P, Sandvik U, Tisch S. Deep brain stimulation in the posterior subthalamic area in the treatment of essential tremor. Mov Disord. 2010;25(10):1350–6.

    Article  PubMed  Google Scholar 

  81. Blomstedt P, Hariz GM, Hariz MI, Koskinen LOD. Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg. 2007;21(5):504–9.

    Article  CAS  PubMed  Google Scholar 

  82. Plaha P, Khan S, Gill SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry. 2008;79(5):504–13.

    Article  CAS  PubMed  Google Scholar 

  83. Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69(2):269–81.

    Article  PubMed  Google Scholar 

  84. Gallay MN, Jeanmonod D, Liu J, Morel A. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 2008;212(6):443–63.

    Article  PubMed  PubMed Central  Google Scholar 

  85. McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010;38(3):329–37.

    Article  PubMed  Google Scholar 

  86. Jörntell H, Ekerot CF. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin. J Physiol. Wiley-Blackwell;. 1999;514(Pt 2):551–66.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  88. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. Oxford University Press;. 2012;135(Pt 11):3206–26.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Baker KB, Schuster D, Cooperrider J, Machado AG. Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp Neurol. Elsevier Inc;. 2010;226(2):259–64.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lemaire J-J, Sakka L, Ouchchane L, Caire F, Gabrillargues J, Bonny J-M. Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging. Neurosurgery. 2010;66(3 Suppl Operative):161–72.

    PubMed  Google Scholar 

  91. Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2⁎-imaging at ultra-high magnetic field strength. NeuroImage. Elsevier Inc;. 2013;65(C):299–314.

    Article  PubMed  Google Scholar 

  92. Traynor CR, Barker GJ, Crum WR, Williams SCR, Richardson MP. Segmentation of the thalamus in MRI based on T1 and T2. NeuroImage. 2011;56(3):939–50.

    Article  PubMed  Google Scholar 

  93. Vassal F, Coste J, Derost P, Mendes V, Gabrillargues J, Nuti C, et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimul. 2012;5(4):625–33.

    Article  PubMed  Google Scholar 

  94. Schaltenbrand G, Wahren W, Hassler R. Atlas for stereotaxy of the human brain: Thieme Medical Publishers; 1977. 1 p.

    Google Scholar 

  95. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord. 2006;21(S14):S259–83.

    Article  PubMed  Google Scholar 

  96. Witjas T, Carron R, Krack P, Eusebio A, Vaugoyeau M, Hariz M, et al. A prospective single-blind study of Gamma Knife thalamotomy for tremor. Neurology. 2015;85(18):1562–8.

    Article  PubMed  Google Scholar 

  97. Spiegelmann R, Nissim O, Daniels D, Ocherashvilli A, Mardor Y. Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI. Stereotact Funct Neurosurg. 2006;84(1):19–23.

    Article  PubMed  Google Scholar 

  98. Lefranc M, Carron R, Régis J. Prelemniscal radiations: a new reliable landmark of the thalamic nucleus ventralis intermedius location. Stereotact Funct Neurosurg. 2015;93(6):400–6.

    Article  PubMed  Google Scholar 

  99. Sedrak M, Gorgulho A, Frew A, Behnke E, DeSalles A, Pouratian N. Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus. Neurosurgery. 2011;69(5):1124–9; discussion 1129–30.

    Article  PubMed  Google Scholar 

  100. Sammartino F, Krishna V, King NKK, Lozano AM, Schwartz ML, Huang Y, et al. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):1217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Coenen VA, Rijntjes M, Prokop T, Piroth T, Amtage F, Urbach H, et al. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson’s disease. Acta Neurochir. Springer Vienna;. 2016;158(4):773–81.

    Article  PubMed  Google Scholar 

  102. Coenen VA, Allert N, Paus S, Kronenburger M, Urbach H, Mädler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657–69; discussion 669–70.

    Article  PubMed  Google Scholar 

  103. Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery. 2011;68(4):1069–75; discussion 1075–6.

    Article  PubMed  Google Scholar 

  104. Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013;229:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hernandez M, Guerrero GD, Cecilia JM, García JM, Inuggi A, Jbabdi S, et al. Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. Yacoub E, editor. PLoS One. 2013;8(4):e61892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hernandez-Fernandez M, Reguly I, Giles M, Jbabdi S, Smith S, Sotiropoulos S. A fast and flexible toolbox for tracking brain connections in diffusion MRI datasets using GPUs. Geneva, Switzerland; 2016.

    Google Scholar 

  107. Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med. 1999;42(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  108. Morel A, Magnin M, Jeanmonod D. Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol. 1997;387(4):588–630.

    Article  CAS  PubMed  Google Scholar 

  109. Jones EG. The thalamus: Springer Science & Business Media; 2012. 1 p.

    Google Scholar 

  110. Tanaka D. Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta). Brain Res. 1976;110(1):21–38.

    Article  PubMed  Google Scholar 

  111. Tobias TJ. Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey. Brain Res. 1975;83(2):191–212.

    Article  CAS  PubMed  Google Scholar 

  112. Markowitsch HJ, Irle E, Emmans D. Cortical and subcortical afferent connections of the squirrel monkey’s (lateral) premotor cortex: evidence for visual cortical afferents. Int J Neurosci. 1987;37(3–4):127–48.

    Article  CAS  PubMed  Google Scholar 

  113. Yarita H, Iino M, Tanabe T, Kogure S, Takagi SF. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J Neurophysiol. 1980;43(1):69–85.

    Article  CAS  PubMed  Google Scholar 

  114. Russchen FT, Amaral DG, Price JL. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol. 1987;256(2):175–210.

    Article  CAS  PubMed  Google Scholar 

  115. Jones EG, Powell TP. Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions. Brain. 1970;93(1):37–56.

    Article  CAS  PubMed  Google Scholar 

  116. Jones EG, Wise SP, Coulter JD. Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J Comp Neurol. 1979;183(4):833–81.

    Article  CAS  PubMed  Google Scholar 

  117. Johansen-Berg H, Gutman DA, Behrens TEJ, Matthews PM, Rushworth MFS, Katz E, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18(6):1374–83.

    Article  CAS  PubMed  Google Scholar 

  118. Klein JC, Barbe MT, Seifried C, Baudrexel S, Runge M, Maarouf M, et al. The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology. 2012;78(11):787–95.

    Article  CAS  PubMed  Google Scholar 

  119. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain. Oxford University Press;. 2014;137(Pt 1):109–21.

    Article  PubMed  Google Scholar 

  120. Hyam JA, Owen SLF, Kringelbach ML, Jenkinson N, Stein JF, Green AL, et al. Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012;70(1):162–9.

    Article  PubMed  Google Scholar 

  121. Ilinsky I, Horn A, Paul-Gilloteaux P, Gressens P, Verney C, Kultas-Ilinsky K. Human motor thalamus reconstructed in 3D from continuous sagittal sections with identified subcortical afferent territories. eNeuro. 2018;5(3)

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, Desalles AAF. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115(5):995–1004.

    Article  PubMed  Google Scholar 

  123. Middlebrooks EH, Tuna IS, Almeida L, Grewal SS, Wong J, Heckman MG, et al. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. Neuroimage Clin. 2018;20:1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kim W, Chivukula S, Hauptman J, Pouratian N. Diffusion tensor imaging-based thalamic segmentation in deep brain stimulation for chronic pain conditions. Stereotact Funct Neurosurg. 2016;94(4):225–34.

    Article  PubMed  Google Scholar 

  125. Hassler R. [Anatomy of the thalamus]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1950;184(3–4):249–56.

    Google Scholar 

  126. Hirai T, Jones EG. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev. 1989;14(1):1–34.

    Article  CAS  PubMed  Google Scholar 

  127. Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin. 2018;18:130–42.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system: Springer Science & Business Media; 2013. 1 p.

    Google Scholar 

  129. Parent A, De Bellefeuille L. Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res. 1982;245(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  130. Sakai ST, Stepniewska I, Qi HX, Kaas JH. Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study. J Comp Neurol. 2000;417(2):164–80.

    Article  CAS  PubMed  Google Scholar 

  131. DeVito JL, Anderson ME. An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res. 1982;46(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  132. Sakai ST, Inase M, Tanji J. Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol. 1999;199(1):9–19.

    Article  CAS  Google Scholar 

  133. Nauta HJ. Projections of the pallidal complex: an autoradiographic study in the cat. NSC. 1979;4(12):1853–73.

    CAS  Google Scholar 

  134. Kuo JS, Carpenter MB. Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol. Wiley Subscription Services, Inc., A Wiley Company;. 1973;151(3):201–36.

    Article  CAS  PubMed  Google Scholar 

  135. Schell GR, Strick PL. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci. 1984 Feb;4(2):539–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Strick PL. Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat. Brain Res. 1973;55(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  137. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286(3):237–65.

    Article  CAS  PubMed  Google Scholar 

  138. Percheron G, François C, Talbi B, Meder JF, Fénelon G, Yelnik J. The primate motor thalamus analysed with reference to subcortical afferent territories. Stereotact Funct Neurosurg. 1993;60(1–3):32–41.

    Article  CAS  PubMed  Google Scholar 

  139. Lambert C, Simon H, Colman J, Barrick TR. Defining thalamic nuclei and topographic connectivity gradients in vivo. NeuroImage. 2017;158:466–79.

    Article  PubMed  Google Scholar 

  140. Calabrese E, Hickey P, Hulette C, Zhang J, Parente B, Lad SP, et al. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp. 2015;36(8):3167–78.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TEJ, et al. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. NeuroImage. Elsevier Inc;. 2011;57(1):167–81.

    Article  PubMed  Google Scholar 

  142. Lambert C, Chowdhury R, Fitzgerald THB, Fleming SM, Lutti A, Hutton C, et al. Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front Hum Neurosci. Frontiers;. 2013;7:462.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lambert C, Lutti A, Helms G, Frackowiak R, Ashburner J. Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians. Neuroimage Clin. 2013;2:684–94.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage. 2007;34(1):144–55.

    Article  CAS  PubMed  Google Scholar 

  145. Åström M, Zrinzo LU, Tisch S, Tripoliti E, Hariz MI, Wårdell K. Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput. 2008;47(1):21–8.

    Article  PubMed  Google Scholar 

  146. Maks CB, Butson CR, Walter BL, Vitek JL, CC MI. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd;. 2009;80(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  147. Åström M, Lemaire J-J, Wårdell K. Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation. Med Biol Eng Comput. 2012;50(1):23–32.

    Article  PubMed  Google Scholar 

  148. Åström M, Diczfalusy E, Martens H, Wårdell K. Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans Biomed Eng. 2015;62(2):664–72.

    Article  PubMed  Google Scholar 

  149. Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, Ashburner J, et al. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics. 2013;11(3):319–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jbabdi S, Johansen-Berg H. Tractography: where do we go from here? Brain Connect. 2011;1(3):169–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harith Akram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, H., Zrinzo, L. (2020). Network-Based Imaging and Connectomics. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics