Skip to main content

Alginates

  • Chapter
  • First Online:
Aquatic Biopolymers

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Alginates are obtained from brown algae, which are mainly found in marine aquatic environment. Alginate chemical structure is characterized by the presence of mannuronic or guluronic acid repeating unit in either alternating or block forms within the polymer chain. They form a part of the cell wall where they provide strength and flexibility to the cell wall. The chapter reviews a number of extraction methods used and then discusses the environmental impact of the extraction process. Alginates find application in a variety of industries which includes food, biomedical, textiles and others. Alginates can be said to be one of the well-explored aquatic biopolymers. The chapter discusses the current state and some of the limitations to its commercial production and presents future perspectives on alginates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aida TM, Yamagata T, Abe C, Richard L, Smith J (2012) Production of organic acids from alginate in high temperature water. J Supercrit Fluids 65:39–44

    Article  CAS  Google Scholar 

  • Aida TM, Yamagata T, Watanabe M, Smith RL Jr (2010) Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym 80(1):296–302

    Article  CAS  Google Scholar 

  • Aleksandra R, Sanja SI (2017) The Influence of nanofillers on physical- chemical properties of polysaccharide- based film intended for food packaging. In: Food packaging, pp 637–697

    Google Scholar 

  • An QD, Zhang GL, Wu HT, Zhang ZC, Zheng GS, Luan L, Murata Y, Li X (2009) Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J Appl Microbiol 106:161–170

    Article  CAS  PubMed  Google Scholar 

  • Aravamudhan A, Ramos DM, Nada AA, Kumbar GS (2014) Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and synthetic biomedical polymers. Elsevier Press, pp 67–89

    Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. https://doi.org/10.1007/s10811-010-9529-3

    Article  Google Scholar 

  • Castilla CJ, Manriquez PH, Camano A (2010) Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarker species. 418:17–23

    Google Scholar 

  • Charrier B, Abreu HM, Araujo R, Bruhn A, Coates JC, De Clerck O, Katsaros C, Robaina RR, Wichard T (2017) Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytol 216:967–975

    Article  PubMed  Google Scholar 

  • Chen F, Long J (2018) Influences of process parameters on the apparent diffusion of an acid dye in sodium alginate paste for textile printing. J Clean Prod 205:1139–1147

    Article  CAS  Google Scholar 

  • Clementi F, Crudele MA, Parente E, Mancini M, Moresi M (1999) Production and characterization of alginate from Azotobacter vinelandii. J Food Sci Agric 79(8):602–610

    Article  CAS  Google Scholar 

  • Donnan FG, Rose RC (1950) Osmotic pressure, molecular weight, and viscosity of sodium alginate. Can J Res 28b(3):105–113

    Article  CAS  Google Scholar 

  • Draget KI (2009) Alginates. Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Sarston, pp 807–828

    Chapter  Google Scholar 

  • Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018—meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. ISBN 978-92-5-130562-1

    Google Scholar 

  • Featherstone S (2015) Ingredients used in the preparation of canned food. In: A complete course in canning and related processes, 4th edn. 2(Microbiology, packaging, HACCP and ingredients) pp. 147–211

    Chapter  Google Scholar 

  • Fertah M, Belfkira A, Dahmane A, Taourirt M, Brouillette F (2017) Extraction and characterization of sodium alginate from Morooccan Laminaria digitata brown seaweed. Arab J Chem 10:53707–53714

    Article  CAS  Google Scholar 

  • Forster J, Radulovich R (2015) Seaweed and food security. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability. Elsevier Academic Press, pp 289–313

    Google Scholar 

  • Grandview Research (2017) Alginate market analysis by type (High G, High M), by product (Sodium alginate, calcium alginate, potassium alginate, propylene glycol alginate). By application, and segment forecasts, 2018–2025. Report ID: GVR-2-68038-244-0, pp 1–127

    Google Scholar 

  • Helmiyati, Aprilliza M (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. In: IOP conference series: materials science engineering, 188 012019 https://doi.org/10.1088/1757-899x/188/1/012019

    Article  Google Scholar 

  • Hernandez-Carmona G, Freile-Pelegrin Y, Hernandez-Garibay E (2013) Conventional and alternative technologies for the extraction of algal polysaccharides

    Google Scholar 

  • Hisni A, Purwanti D, Ustadi A (2016) Blood glucose level and lipid profile of streptozotocin-induced diabetes rats treated with sodium alginate from sargassum crassifolium. J Biol Sci 16(3):58–64

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25(5):249–254

    Article  CAS  Google Scholar 

  • Idota Y, Kato T, Shiragami K, Koike M, Yokoyama A, Takahashi H, Yano K, Ogihara T (2018) Mechanism of suppression of blood glucose level by calcium alginate in rats. Biol Pharm Bull 41(9):1362–1366

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki KI, Matsubara Y (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem 64:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Konda M, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An investigation on the economic feasibility of Macroalgae as a potential feedstock for biorefineries. Bioenergy Res 8:1046–1056

    Article  Google Scholar 

  • Lakshmi SD, Trivedi N, Reddy CRK (2017) Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohyd Polym 157:1604–1610

    Article  CAS  Google Scholar 

  • Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M (2016) Alginate for cardiac regeneration: from seaweed to clinical trials. Global Cardiol Sci Pract 4:1–25

    Google Scholar 

  • McHugh DJ (1987) Production, properties and uses of alginates ln “Production and utilization of products from commercial seaweeds. FAO Fish Tech Paper 288:58–115

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO fisheries technical paper 441. FAO, Rome. ISBN 92-5-104958-0, Chapter 5, pp 1–12

    Google Scholar 

  • Monagail MM, Cornish L, Morrison L, Araujo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52(4):371–390

    Article  Google Scholar 

  • Moulonguet I, de Goursac C, Plantier F (2011) Am J Dermatopathol 33(7):710–711

    Google Scholar 

  • Mushollaeni W (2011) The physicochemical characterization of sodium alginate from indonesian brown seaweeds. Afr J Food Sci 5(6):349–352

    CAS  Google Scholar 

  • Nagarajan A, Shanmugam A, Zackaria A (2016) Mini review on alginate: scope and future perspectives. J Algal Biomass Util 7(1):45–55

    Google Scholar 

  • Olatunji O, Olsson RT (2016) Processing and characterization of natural polymers. In: Natural polymers, industry techniques and applications. Springer, Switzerland. ISBN 978-3-319-26412-7

    Google Scholar 

  • Paques JP (2015) Alginate nanospheres prepared by internal or external gelation with nanoparticles. In: Macroencapsulation and microspheres for food application, pp 39–55

    Chapter  Google Scholar 

  • Parreidt TS, Muller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7(170):1–38

    Google Scholar 

  • Paxman JR, Richardson JC, Pw Dettmar, Corfe BM (2008) Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: a pilot study. Nutr Res 28(8):501–505

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Jiang J, Zhao L, Zhang J, Wang F (2018) Applications of alginate as a functional food ingredient. Biopolymers for food Design. Handb Food Bioeng, pp 409–429. https://doi.org/10.1016/b978-0-12-811449-0.00013-x

    Chapter  Google Scholar 

  • Radulovich R, Neori A, Valderrama D, Reddy CRK, Cronin H, Forster J (2015) Farming of seaweeds. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability: food and non-food applications, pp 27–59

    Chapter  Google Scholar 

  • Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13(6):3340–3359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Gonzalez ME, Williams CJ, Gardiner PHE (2001) Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environ Sci Technol 35(14):3025–3030

    Article  CAS  PubMed  Google Scholar 

  • Rompp W, Axon G, Thompson T (1983) Sodium alginate: a textile printing thickener. Am Dyestuff Rep 72(2):1–16

    Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2014) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27(1):363–373

    Article  CAS  Google Scholar 

  • Shkand T, Chizh MO, Sleta IV, Sandomirsky BP, Tatarets AL, Patsenker LD (2016) Assessment of alginate hydrogel degradation in biological tissue using viscosity sensitive fluorescent dyes. Methods Appl Fluoresc 4(4):044002

    Article  PubMed  CAS  Google Scholar 

  • Taelman SE, Champenois J, Edwards MD, De Meester S, Dewulf J (2015) Comparative environmental life cycle assessment of two seaweed cultivation systems in north west Europe with a focus on quantifying sea surface occupation. Algal Res 11:173–183

    Article  Google Scholar 

  • Takeshita S, Oda T (2016) Usefulness of alginate lyases derived from marine organisms for the preparation of alginate oligomers with various bioactivities. Adv Food Nutr Res 79:137–160

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Nithya R, Sudha PN, Kim S (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu B, Yang Q, Lu D (2014) Rheological studies of mixed printing pastes from sodium alginate and modified xanthan and their application in the reactive printing of cotton. Color Technol 130(4):320–335

    Article  CAS  Google Scholar 

  • Wan J, Zhang J, Chen D, Yu B, He J (2017) Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs. Anim Feed Sci Technol 234:118–127

    Article  CAS  Google Scholar 

  • Wan J, Zhang J, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J (2018) Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv 8:13482–13492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windhues T, Borchard W (2003) Effect of acetylation on physicochemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohyd Polym 52(1):47–52

    Article  CAS  Google Scholar 

  • Zhu B, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6(3):125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2020). Alginates. In: Aquatic Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-34709-3_4

Download citation

Publish with us

Policies and ethics