Skip to main content

Magmatic Deposits

  • Chapter
  • First Online:
The World of Mineral Deposits
  • 1743 Accesses

Abstract

Magma is fused rock (i.e., melt including dissolved gases and any crystals floating in it). Magma can cool and solidify at depth to form a large rock body such as a pluton, extrude at a volcano as lava, or finely fragment as an ash cloud. Corresponding igneous (i.e., magmatic) rocks are called plutonic (or intrusive) and volcanic (or extrusive) (Figs. 3.1, 3.2 and 3.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Ames, D.E., A. Davidson, and N. Wodicka. 2008. Geology of the giant Sudbury polymetallic mining camp, Ontario, Canada. Economic Geology 103: 1057–1077.

    Article  Google Scholar 

  • Arndt, N.T., G.K. Czamanske, R.J. Walker, C. Chauvel, and V.A. Fedorenko. 2003. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Economic Geology 98: 495–515.

    Google Scholar 

  • Arzamastsev, A.A. 1994. Unique Paleozoic Intrusions of the Kola Peninsula. Apatity: Geological Institute of the Kola Science Centre.

    Google Scholar 

  • Arzamastsev, A.A., L.V. Arzamastseva, A.V. Travin, B.V. Belyatsky, A.M. Shamatrin, A.V. Antonov, A.N. Larionov, N.V. Rodionov, and S.A. Sergeev. 2007. Duration of formation of magmatic system of polyphase paleozoic alkaline complexes of the central Kola: U-Pb, Rb-Sr, Ar-Ar Data. Doklady Earth Sciences 413A: 432–436.

    Article  Google Scholar 

  • Ashwal, L.D. 1993. Anorthosites. Berlin: Springer.

    Book  Google Scholar 

  • Bailey, J.C., H. Sørensen, T. Andersen, L.N. Kogarko, and J. Rose-Hansen. 2006. On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilímaussaq alkaline complex, South Greenland. Lithos 91: 301–318.

    Article  Google Scholar 

  • Ballhaus, C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters 156: 185–193.

    Article  Google Scholar 

  • Ballhaus, C., and P. Sylvester. 2000. Noble metal enrichment processes in the Merensky Reef, Bushveld complex. Journal of Petrology 41: 545–561.

    Article  Google Scholar 

  • Barnes, S.J. 2007. Cotectic precipitation of olivine and sulfide liquid from komatiite magma and the origin of komatiite-hosted disseminated nickel sulfide mineralization at Mount Keith and Yakabindie, Western Australia. Economic Geology 299–304.

    Google Scholar 

  • Bell, K. (ed.). 1989. Carbonatites: Genesis and evolution. London: Chapman & Hall.

    Google Scholar 

  • Bell, K., and J. Keller. 1995. Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. Heidelberg: Springer.

    Book  Google Scholar 

  • Bell, K., and G.R. Tilton. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology 42: 1927–1945.

    Article  Google Scholar 

  • Boudreau, A.E., and A.R. McBirney. 1997. The Skaergaard layered series. Part III. Non-dynamic layering. Journal of Petrology 38: 1003–1020.

    Article  Google Scholar 

  • Brooker, R.A., and B.A. Kjarsgaard. 2011. Silicate-carbonate liquid immiscibility and phase relations in the System SiO2-Na2O-Al2O3-CaO-CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. Journal of Petrology 52: 1281–1305.

    Article  Google Scholar 

  • Büchl, A., G. Brügmann, and V.G. Batanova. 2004. Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology 208: 217–232.

    Article  Google Scholar 

  • Caran, Ş., H. Çoban, M.E.J. Flower, C.J. Ottley, and K.Y. lmaz. 2010. Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): Implications for partial melting and melt-rock interaction in oceanic and subduction-related settings. Lithos 114: 307–326.

    Article  Google Scholar 

  • Castor, S.B. 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Canadian Mineralogist 46: 779–806.

    Article  Google Scholar 

  • Cawthorn, R.G. 2007. Cr and Sr: Keys to parental magmas and processes in the Bushveld Complex, South Africa. Lithos 95: 198–381.

    Article  Google Scholar 

  • Cawthorn, R.G., and S.J. Webb. 2001. Connectivity between the western and eastern limbs of the Bushveld Complex. Tectonophysics 330: 195–209.

    Article  Google Scholar 

  • Černý, P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry 7: 393–416.

    Article  Google Scholar 

  • Černý, P., and T.S. Ercit. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist 43: 2005–2026.

    Article  Google Scholar 

  • Charlier, B., and T.L. Grove. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology 164: 27–44.

    Article  Google Scholar 

  • Charlier, B., J.-C. Duchesne, and J. Vander Auwera. 2006. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites. Chemical Geology 234: 264–290.

    Article  Google Scholar 

  • Clarke, B., R. Uken, and J. Reinhardt. 2009. Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa. Lithos 111: 21–36.

    Article  Google Scholar 

  • Darling, J.R., C.J. Hawkesworth, P.C. Lightfoot, C.D. Storey, and E. Tremblay. 2010. Isotopic heterogeneity in the Sudbury impact melt sheet. Earth and Planetary Science Letters 289: 347–356.

    Article  Google Scholar 

  • Dawson, J.B. 1962. Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195: 1075–1076.

    Article  Google Scholar 

  • De Waal, S.A., Z. Xu, C. Li, and H. Mouri. 2004. Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, Western China. Canadian Mineralogist 42: 371–392.

    Article  Google Scholar 

  • Distler, V.V., V.V. Kryachko, and M.A. Yudovskaya. 2008. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineralogy and Petrology 92: 31–58.

    Article  Google Scholar 

  • Dowling, S.E., and R.E.T. Hill. 1998. Komatiite-hosted nickel sulphide deposits, Australia. Special Jubilee Issue of Australian Geological Survey Organisation Journal 17: 121–127.

    Google Scholar 

  • Downes, H., E. Balaganskaya, A. Beard, R. Liferovich, and D. Demaiffe. 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos 85: 48–75.

    Article  Google Scholar 

  • Eales, H.V. 2000. Caveats in defining the magmas parental to the mafic rocks of the Bushveld Complex, and the manner of their emplacement: review and commentary. Mineralogical Magazine 66: 815832.

    Google Scholar 

  • Eales, H.V. 2002. Implications of the chromium budget of the Western Limb of the Bushveld Complex. South African Journal of Geology 103: 141–150.

    Article  Google Scholar 

  • Féménias, O., N. Coussaert, S. Brassinnes, and D. Demaiffre. 2005a. Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia). Lithos 83: 371393.

    Google Scholar 

  • Féménias, O., D. Ohnstetter, N. Coussaert, J. Berger, and D. Demaiffre. 2005b. Origin of micro-layering in a deep magma chamber: Evidence from two ultramafic-mafic layered xenoliths from Puy Beaunit. Lithos 83: 347–370.

    Article  Google Scholar 

  • Frietsch, R., and J.-A. Perdahl. 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews 9: 489–510.

    Article  Google Scholar 

  • Giehl, C., M. Marks, and M. Nowak. 2013. Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contributions to Mineralogy and Petrology 165: 283–304.

    Article  Google Scholar 

  • Gittins, J., and R.E. Harmer. 1997. What is ferrocarbonatite? A revised classification. Journal of African Earth Sciences 25: 159–168.

    Article  Google Scholar 

  • Gittins, J., R.E. Harmer, and D.S. Barker. 2005. The bimodal composition of carbonatites: Reality or misconception? Lithos 85: 129–139.

    Article  Google Scholar 

  • Godel, B., S.-J. Barnes, and W.D. Maier. 2011. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: An example from the lower and lower critical zones of the Bushveld Complex, South-Africa. Lithos 125: 537–552.

    Article  Google Scholar 

  • Goodenough, K.M., B.G.J. Upton, and R.M. Ellam. 2000. Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich “A-type” intrusion. Lithos 51: 205–221.

    Article  Google Scholar 

  • Graser, G., J. Potter, J. Köhler, and G. Markl. 2008. Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 106: 207–221.

    Article  Google Scholar 

  • Groves, D.I., and N.M. Vielreicher. 2001. The Phalaborwa (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron-oxide copper-gold-rare earth element deposit group? Mineralium Deposita 36: 189–194.

    Article  Google Scholar 

  • Guest, N.J. 1956. The volcanic activity of Oldoinyo L’Engai, 1954. Rec. Geological Survey Tanganyika 4: 56–59.

    Google Scholar 

  • Halama, R., T. Vennemann, W. Siebel, and G. Markl. 2005. The Grønnedal-Ika carbonatite-syenite compex, South Greenland: Carbonatite formation by liquid immiscibility. Journal of Petrology 46: 191–217.

    Article  Google Scholar 

  • Harlov, D.E., U.B. Andersson, H.-J. Förster, J.O. Nyström, P. Dulksi, and C. Broman. 2002. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology 191: 47–72.

    Article  Google Scholar 

  • Harmer, R.E., and J. Gittins. 1997. The origin of dolomitic carbonatites: Field and experimental constraints. Journal of African Earth Sciences 25: 5–18.

    Article  Google Scholar 

  • Harmer, R.E., and J. Gittins. 1998. The case for primary, mantle-derived carbonatite magma. Journal of Petrology 39: 1895–1903.

    Article  Google Scholar 

  • Hoatson, D.M., S. Jaireth, and A.L. Jaques. 2006. Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews 29: 177–241.

    Article  Google Scholar 

  • Holness, M.B., G. Stripp, M.C.S. Humphreys, I.V. Veksler, T.F.D. Nielsen, and C. Tegner. 2011. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of Petrology 52: 175–222.

    Article  Google Scholar 

  • Holwell, D.A., I. McDonald, and I.B. Butler. 2011. Precious metal enrichment in the Platreef, Bushveld Complex, South Africa: Evidence from homogenized magmatic sulfide melt inclusions. Contributions to Mineralogy and Petrology 161: 1011–1026.

    Article  Google Scholar 

  • Hoover, J.D. 1978. Petrologic features of the Skaergaard Marginal Border Group. Carnegie Institution Washington Yearbook 77: 732–739.

    Google Scholar 

  • Hou, T., Z. Zhang, and T. Kusky. 2011. Gushan magnetite-apatite deposit in the Ningwu basin, lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews 43: 333–346.

    Article  Google Scholar 

  • Irvine, T.N. 1977. Origin of chromitite layers in the Muskox intrusion. Geology 5: 273–277.

    Article  Google Scholar 

  • Irvine, T.N. 1980. Magmatic density currents and cumulus processes. American Journal of Science 280A: 1–58.

    Google Scholar 

  • Irvine, T.N., J.C.Ø. Andersen, and C.K. Brooks. 1998. Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geologic relations and the origin of rhythmic modally graded layers. Geological Society of America Bulletin 110: 1398–1447.

    Article  Google Scholar 

  • Jakobsen, J.K., I.V. Veksler, C. Tegner, and C.K. Brooks. 2011. Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron- and silica-rich liquids: Evidence from melt inclusions in plagioclase. Journal of Petrology 52: 345–373.

    Article  Google Scholar 

  • Jami, M., A.C. Dunlop, and D.R. Cohen. 2007. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, central Iran. Economic Geology 102: 1111–1128.

    Article  Google Scholar 

  • Jami, M., A.C. Dunlop, and D.R. Cohen. 2009. Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, central Iran—A reply. Economic Geology 104: 140–143.

    Article  Google Scholar 

  • Jang, Y.D., H.R. Naslund, and A.R. McBirney. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: Iron enrichment revisited. Earth and Planetary Science Letters 189: 189–196.

    Article  Google Scholar 

  • Jones, J.H., D. Walker, D.A. Pickett, M.T. Murrel, and P. Beattie. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids. Geochimica et Cosmochimica Acta 59: 1307–1320.

    Article  Google Scholar 

  • Keays, R.R., and P.C. Lightfoot. 2004. Formation of Ni-Cu-Platinum group element sulfide mineralization in the sudbury impact melt sheet. Mineralogy and Petrology 82: 217–258.

    Article  Google Scholar 

  • Keller, J. 1981. Carbonatitic volcanism in the Kaiserstuhl alkaline complex: Evidence for highly fluid carbonatitic melts at the earth´s surface. Journal of Volcanology and Geothermal Research 9: 423–431.

    Article  Google Scholar 

  • Keppler, H. 2003. Water solubility in carbonatite melts. American Mineralogist 88: 1822–1824.

    Article  Google Scholar 

  • Kinnaird, J.A., F.J. Kruger, P.A.M. Nex, and R.G. Cawthorn. 2002. Chromitite formation—A key to understanding processes of platinum enrichment: Institution of mining and metallurgy transactions, section B. Applied Earth Science 111: B23–B35.

    Article  Google Scholar 

  • Kjarsgaard, B.A., D.L. Hamilton. 1989. The genesis of carbonatites by immiscibility. In Carbonatites: Genesis and evolution, ed. K. Bell. London: Chapman & Hall.

    Google Scholar 

  • Kjarsgaard, B.A., and T.D. Peterson. 1991. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. Mineralogy and Petrology 43: 293–314.

    Article  Google Scholar 

  • Kogarko, L.N., V.A. Kononova, M.P. Orlova, and A.R. Woolley. 1995. Alkaline rocks and carbonatites of the world. Part 2: Former USSR. London: Chapman and Hall.

    Google Scholar 

  • Köhler, J., J. Konnerup-Madsen, and G. Markl. 2008. Fluid geochemistry in the Ivigtut cryolite deposit, South Greenland. Lithos 103: 369–392.

    Article  Google Scholar 

  • Köhler, J., J. Schönenberger, B. Upton, and G. Markl. 2009. Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos 113: 731–747.

    Article  Google Scholar 

  • Kruger, F.J. 2005. Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, Magmatic uniformities, and the formation of giant chromite, PGE and Ti-V magnetite deposits. Mineralium Deposita 40: 451–472.

    Article  Google Scholar 

  • Krumrei, T., E. Pernicka, M. Kaliwoda, and G. Markl. 2007. Volatiles in a peralkaline system: Abiogenic hydrocarbons and F-Cl-Br systematics in the naujaite of the Ilimaussaq intrusion, South Greenland. Lithos 95: 298–314.

    Article  Google Scholar 

  • Küster, D. 2009. Granitoid-hosted Ta mineralization in the Arabian-Nubian shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geology Reviews 35: 68–86.

    Article  Google Scholar 

  • Lee, M.J., J.I. Lee, D. Garcia, J. Moutte, C.T. Williams, F. Wall, and Y. Kim. 2006a. Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: Implications for the genesis of phoscorite and carbonatite association. Geochemical Journal 40: 1–13.

    Article  Google Scholar 

  • Lee, M.J., J.I. Lee, S.D. Hur, Y. Kim, J. Moutte, and E. Balaganskaya. 2006b. Sr-Nd-Pb isotopic compositions of the Kovdor phoscorite-carbonatite complex, Kola Peninsula, NW Russia. Lithos 91: 250–261.

    Article  Google Scholar 

  • Li, C., S.-J. Barnes, E. Makovicky, J. Rose-Hansen, and M. Makovicky. 1996. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochimica et Cosmochimica Acta 60: 1231–1238.

    Article  Google Scholar 

  • Li, C., E.M. Ripley, and E.A. Mathez. 2003. The effect of S on the partitioning of Ni between olivine and silicate melt in MORB. Chemical Geology 201: 295–306.

    Article  Google Scholar 

  • Lightfoot, P.C., and C.E.G. Farrow. 2002. Geology, geochemistry, and mineralogy of the Worthington Offset Dike: A genetic model for offset dike mineralization in the Sudbury Igneous Complex. Economic Geology 97: 1419–1446.

    Article  Google Scholar 

  • Lightfoot, P.C., and R.R. Keays. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: Implications for the origin of the Ni-Cu-PGE ores. Economic Geology 100: 439–462.

    Article  Google Scholar 

  • Lightfoot, P.C., R.R. Keays, and W. Doherty. 2001. Chemical evolution and origin of nickel sulfide mineralization in the Sudbury Igneous Complex, Ontario, Canada. Economic Geology 96: 1855–1875.

    Google Scholar 

  • London, D. 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80: 281–303.

    Article  Google Scholar 

  • London, D. 2008. Pegmatites. Special Publication 10, Mineralogical Association of Canada.

    Google Scholar 

  • London, D. 2009. The origin of primary textures in granitic pegmatites. Canadian Mineralogist 47: 697–724.

    Article  Google Scholar 

  • Maier, W.D., and S.-J. Barnes. 2010. The petrogenesis of platinum-group element reefs in the Upper Main Zone of the Northern Lobe of the Bushveld Complex on the farm Moordrift, South Africa. Economic Geology 105: 841–854.

    Article  Google Scholar 

  • Maier, W.D., S.-J. Barnes, and D.I. Groves. 2013. The Bushveld Complex, South Africa: Formation of platinum-palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineralium Deposita 48: 1–56.

    Article  Google Scholar 

  • Markl, G., and L. Baumgartner. 2002. PH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology 144: 331–346.

    Article  Google Scholar 

  • Markl, G., M. Marks, G. Schwinn, and H. Sommer. 2001. Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq Complex, South Greenland. Journal of Petrology 42: 2231–2258.

    Article  Google Scholar 

  • Markl, G., M.A.W. Marks, and B.R. Frost. 2010. On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology 51: 1831–1847.

    Article  Google Scholar 

  • Marks, M., and G. Markl. 2001. Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria. Journal of Petrology 42: 1947–1969.

    Article  Google Scholar 

  • Marks, M.A.W., T. Vennemann, W. Siebel, and G. Markl. 2004. Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilimaussaq intrusion, South Greenland. Geochimica et Cosmochimica Acta 68: 3379–3395.

    Article  Google Scholar 

  • Marks, M.A.W., F. Neukirchen, T. Vennemann, and G. Markl. 2009. Textural, chemical, and isotopic effects of late-magmatic carbonatitic fluids in the carbonatite-syenite Tamazeght complex, High Atlas Mountains, Morocco. Mineralogy and Petrology 97: 23–42.

    Article  Google Scholar 

  • Marks, M.A.W., K. Hettmann, J. Schilling, B.R. Frost, and G. Markl. 2011. The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology 52: 439–455.

    Article  Google Scholar 

  • Martin, R.F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91: 125–136.

    Article  Google Scholar 

  • Martin, R.F., and C. De Vito. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist 43: 2027–2048.

    Article  Google Scholar 

  • Matveev, S., and C. Ballhaus. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters 203: 235–243.

    Article  Google Scholar 

  • McBirney, A.R. 1989. The Skaergaard layered series: I. Structure and average compositions. Journal of Petrology 30: 363–379.

    Article  Google Scholar 

  • McBirney, A.R. 2009. Factors governing the textural development of Skaergaard gabbros: A review. Lithos 111: 1–5.

    Article  Google Scholar 

  • McBirney, A.R., and A. Nicolas. 1997. The Skaergaard Layered Series. Part II. Magmatic flow and dynamic layering. Journal of Petrology 38: 569–580.

    Article  Google Scholar 

  • Melcher, F., W. Grum, G. Simon, T.V. Thalhammer, and E.F. Stumpfl. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology 38: 1419–1458.

    Article  Google Scholar 

  • Mitchell, A.A., and R.N. Scoon. 2007. The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: A primary magmatic hypothesis based on a wide reef facies. Economic Geology 102: 971–1009.

    Article  Google Scholar 

  • Mitchell, R.H. 2005. Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist 43: 2049–2068.

    Article  Google Scholar 

  • Molnár, F., D.H. Watkinson, and P.C. Jones. 2001. Multiple hydrothermal processes in footwall units of the North Range, Sudbury Igneous Complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Economic Geology 96: 1645–1670.

    Article  Google Scholar 

  • Mondal, S.K., and E.A. Mathez. 2006. Origin of the UG2 chromitite layer, Bushveld complex. Journal of Petrology 48: 495–510.

    Article  Google Scholar 

  • Mungall, J.W., D.R.A. Andrews, L.J. Cabri, P.J. Sylvester, and M. Tubrett. 2005. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochimica et Cosmochimica Acta 69: 4349–4360.

    Article  Google Scholar 

  • Murck, B.W., and I.H. Campbell. 1986. The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochimica et Cosmochimica Acta 50: 1871–1887.

    Article  Google Scholar 

  • Naldrett, A.J. 1992. A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Economic Geology 87: 1945–1962.

    Article  Google Scholar 

  • Naldrett, A.J., and A.H. Wilson. 1990. Horizontal and vertical variations in noble-metal distribution in the Great Dyke of Zimbabwe: A model for the origin of the PGE mineralization by fractional segregation of sulfide. Chemical Geology 88: 279–300.

    Article  Google Scholar 

  • Naldrett, A.J., J. Kinnaird, A. Wilson, and G. Chunnett. 2008. Concentration of PGE in the Earth’s crust with special reference to the Bushveld complex. Earth Science Frontiers 15: 264–297.

    Article  Google Scholar 

  • Naldrett, A.J., A. Wilson, J. Kinnaird, M. Yudovskaya, and G. Chunnet. 2012. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Mineralium Deposita 47: 209–232.

    Article  Google Scholar 

  • Naslund, H.R. 1983. Petroloy of the upper border series of the Skaergaard intrusion. Journal of Petrology 25: 185–212.

    Article  Google Scholar 

  • Naslund, H.R., F. Henriques, J.O. Nystrom, W. Vivallo, and F.M. Dobbs. 2002. Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal Cordillera. In Hydrothermal iron oxide-copper-gold and related deposits: A global perspective, ed. T.M. Porter. Australia: Australian Mineral Foundation, Adelaide.

    Google Scholar 

  • Ngwenya, B.T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface. Geochimica et Cosmochimica Acta 58: 2061–2072.

    Article  Google Scholar 

  • Nivin, V.A., P.J. Treloar, N.G. Konopleva, and S.V. Ikorsky. 2005. A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia. Lithos 85: 93–112.

    Article  Google Scholar 

  • Oberthür, T., D.W. Davis, T.G. Blenkinsop, and A. Höhndorf. 2002. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe—Constraints on late Archean events in the Zimbabwe craton and Limpopo belt. Precambrian Research 113: 293–305.

    Article  Google Scholar 

  • Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.

    Google Scholar 

  • Pauly, H., and J.C. Bailey. 1999. Genesis and evolution of the Ivigtut cryolite deposit, South Greenland. Meddelelser om Grønland, Geoscience 28. Kopenhagen.

    Google Scholar 

  • Pfaff, K., T. Krumrei, M. Marks, T. Wenzel, T. Rudolf, and G. Markl. 2008. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 106: 280–296.

    Article  Google Scholar 

  • Pfaff, K., T. Wenzel, J. Schilling, M. Marks, and G. Markl. 2010. A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch für Mineralogie 187: 69–81.

    Google Scholar 

  • Philpotts, A.R. 1982. Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology 80: 201–218.

    Article  Google Scholar 

  • Pons, J., P. Barbey, H. Nachit, and J.-P. Burg. 2006. Development of igneous layering during growth of pluton: The Tarçouate Laccolith (Morocco). Tectonophysics 413: 271–286.

    Article  Google Scholar 

  • Prevec, S.A., P.C. Lightfoot, and R.R. Keays. 2000. Evoluton of the sublayer of the Sudbury Igneous Complex: Geochemical, Sm-Nd isotopic and petrologic evidence. Lithos 51: 271–292.

    Article  Google Scholar 

  • Prichard, H.M., C.R. Neary, P.C. Fisher, and M.J. O’Hara. 2008. PGE-rich podiform chromitites in the Al ‘Ays Ophiolite Complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE. Economic Geology 103: 1507–1529.

    Article  Google Scholar 

  • Rickers, K., R. Thomas, and W. Heinrich. 2006. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions. Mineralium Deposita 41: 229–245.

    Article  Google Scholar 

  • Rohrbach, A., and M.W. Schmidt. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472: 209–214.

    Article  Google Scholar 

  • Roussel, D.H., J.S. Fedorowich, and B.O. Dressler. 2003. Sudbury Breccia (Canada): A product of the 1850 Ma Sudbury event and host to footwall Cu-Ni-PGE deposits. Earth-Science Reviews 60: 147–174.

    Article  Google Scholar 

  • Ryabchikov, I.D., and L.N. Kogarko. 2006. Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos 92: 35–45.

    Article  Google Scholar 

  • Salvi, S., and A.E. Williams-Jones. 1995. Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. American Mineralogist 80: 1031–1040.

    Article  Google Scholar 

  • Schilling, J., F.-Y. Wu, C. McCammon, T. Wenzel, M.A.W. Marks, K. Pfaff, D.E. Jacob, and G. Markl. 2011. The compositional variability of eudialyte-group minerals. Mineralogical Magazine 75: 87–115.

    Article  Google Scholar 

  • Schoenberg, R., F.J. Kruger, T.F. Nägler, T. Meisel, and J.D. Kramers. 1999. PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex; a Re-Os and Rb-Sr isotope study. Earth and Planetary Science Letters 172: 49–64.

    Article  Google Scholar 

  • Scott, R.G., and K. Benn. 2002. Emplacement of sulfide deposits in the copper cliff offset dike during collapse of the sudbury crater rim: Evidence from magnetic fabric studies. Economic Geology 97: 1447–1458.

    Article  Google Scholar 

  • Seabrook, C.L., R.G. Cawthorn, and F.J. Kruger. 2005. The Merensky Reef, Bushveld Complex: Mixing of minerals not mixing of magmas. Economic Geology 100: 1191–1206.

    Article  Google Scholar 

  • Sillitoe, R.H., and D.R. Burrows. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology 97: 1101–1109.

    Google Scholar 

  • Smith, M.P., P. Henderson, and L.S. Campbell. 2000. Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta 64: 3141–3160.

    Article  Google Scholar 

  • Solovova, I.P., I.D. Ryabchikov, A.V. Girnis, A. Pedersen, and T. Hansteen. 2002. Reduced magmatic fluids in basalt from the island of Disko, central West Greenland. Chemical Geology 183: 365–371.

    Article  Google Scholar 

  • Sørensen, H. 1997. The agpaitic rocks—An overview. Mineralogical Magazine 61: 485–498.

    Article  Google Scholar 

  • Sørensen, H. 2001. Brief introduction to the geology of the Ilimaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin 190: 7–24.

    Google Scholar 

  • Sørensen, H., H. Bohse, and J.C. Bailey. 2006. The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos 91: 286–300.

    Article  Google Scholar 

  • Spandler, C., J. Mavrogenes, and R. Arculus. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geology 33: 893–896.

    Article  Google Scholar 

  • Therriault, A.M., A.D. Fowler, and R.A.F. Grieve. 2002. The Sudbury Igneous Complex: A differentiated impact melt sheet. Economic Geology 97: 1521–1540.

    Article  Google Scholar 

  • Thomas, R., P. Davidson, and H. Beurlen. 2012. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineralogy and Petrology 106: 55–73.

    Article  Google Scholar 

  • Thy, P., C.E. Lesher, T.F.D. Nielsen, and C.K. Brooks. 2006. Experimental constraints on the Skaergaard liquid line of descent. Lithos 92: 154–180.

    Article  Google Scholar 

  • Ulff-Møller, F. 1990. Formation of native iron in sediment-contaminated magma: I. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochimica et Cosmochimica Acta 54: 57–70.

    Article  Google Scholar 

  • Van der Merwe, J., and R.G. Cawthorn. 2005. Structures at the base of the Upper Group 2 chromitite layer, Bushveld Complex, South Africa, on Karee Mine (Lonmin Platinum). Lithos 83: 214–228.

    Article  Google Scholar 

  • Veksler, I.V., C. Petibon, G.A. Jenner, A.M. Dorfman, and D.B. Dingwell. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. Journal of Petrology 39: 2095–2104.

    Article  Google Scholar 

  • Veksler, I.V., A.M. Dorfman, A.A. Borisov, R. Writh, and D.B. Dingwell. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology 48: 2187–2210.

    Article  Google Scholar 

  • Voordouw, R., J. Gutzmer, and N.J. Beukes. 2009. Intrusive origin of Upper Group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineralogy and Petrology 97: 75–94.

    Article  Google Scholar 

  • Wager, L.R., and G.M. Brown. 1968. Layered igneous rocks. San Francisco: Freeman.

    Google Scholar 

  • Wall, F., and A.N. Zaitsev (ed.). 2004. Phoscorites and carbonatites from mantle to mine. Mineralogical society series, vol. 10.

    Google Scholar 

  • Wilson, A.H., C.Z. Murahwi, and B. Coghill. 2000. Stratigraphy, geochemistry and platinum group element mineralisation of the central zone of the Selukwe subchamber of the Great Dyke, Zimbabwe. Journal of African Earth Sciences 30: 833–853.

    Article  Google Scholar 

  • Woolley, A.R. 1987. Alkaline rocks and carbonatites of the World. Part 1: North and South America. British Museum, London and University of Texas Press.

    Google Scholar 

  • Woolley, A.R. 2001. Alkaline rocks and carbonatites of the World. Part 3: Africa. London: The Geological Society.

    Google Scholar 

  • Xu, C., H. Zhang, Z. Huang, C. Liu, L. Qi, W. Li, and T. Guan. 2004. Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China: Evidence from Pb isotope geochemistry. Geochemical Journal 38: 67–76.

    Article  Google Scholar 

  • Xu, C., L. Wang, W. Song, and M. Wu. 2010. Carbonatites in China: A review for genesis and mineralization. Geoscience Frontiers 1: 105–114.

    Article  Google Scholar 

  • Yang, K.-F., H.-R. Fan, M. Santosh, F.-F. Hu, and K.-Y. Wang. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews 40: 122–131.

    Article  Google Scholar 

  • Yang, Z., and A. Woolley. 2006. Carbonatites in China: A review. Journal of African Earth Sciences 27: 559–575.

    Google Scholar 

  • Zaitsev, A., and K. Bell. 1995. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contributions to Mineralogy and Petrology 121: 324–335.

    Article  Google Scholar 

  • Zhang, Z., J. Mao, A.D. Saunders, Y. Ai, Y. Li, and L. Zhao. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 113: 369–392.

    Article  Google Scholar 

  • Zingg, A.J. 1996. Recrystallization and the origin of layering in the Bushveld Complex. Lithos 37: 15–37.

    Article  Google Scholar 

Further Reading

  • Best, M.G., and E.H. Christiansen. 2001. Igneous petrology. Malden, Massachussetts: Blackwell Science.

    Google Scholar 

  • Guilbert, J.M., and C.F. Park. 1986. The geology of ore deposits. New York: WH Freeman.

    Google Scholar 

  • Laznicka, P. 2010. Giant metallic deposits: Future sources of industrial metals, 2nd ed. Heidelberg: Springer.

    Book  Google Scholar 

  • Markl, G. 2008. Minerale und Gesteine: Mineralogie—Petrologie—Geochemie, 2nd ed. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Misra, K.C. 2000. Understanding mineral deposits. Dordrecht, Niederlande: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Naldrett, A.J. 2004. Magmatic sulfide deposits. Heidelberg: Springer.

    Book  Google Scholar 

  • Neukirchen, F. 2012. Edelsteine: Brillante Zeugen für die Erforschung der Erde. Heidelberg: Springer Spektrum.

    Book  Google Scholar 

  • Pohl, W.L. 2011. Economic geology. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Robb, L. 2005. Introduction to ore-forming processes. Malden, Massachussetts: Blackwell Science.

    Google Scholar 

  • Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.

    Google Scholar 

  • Winter, J.D. 2001. Igneous and metamorphic petrology. New Jersey: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Neukirchen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neukirchen, F., Ries, G. (2020). Magmatic Deposits. In: The World of Mineral Deposits. Springer, Cham. https://doi.org/10.1007/978-3-030-34346-0_3

Download citation

Publish with us

Policies and ethics