Skip to main content

Abstract

A road network is a large scale system with huge amounts of interdependent elements such as streets, junctions, traffic lights, traffic flows, and the like. Deep understanding of the nature of existing dependencies between the elements of the road network could offer decision makers and managers of different levels significant support in the transportation sphere. Thus, the Introduction chapter is devoted to a brief review on traffic theory development, and it illuminates important research directions in the field to be taken under additional careful investigation. The major attention is paid to problems concerning traffic assignment. The discussion tends to cover both practical and theoretical aspects. Essentially, the Introduction is committed to specify a general line of the book in a short way so as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semenov VV (2004) Matematicheskoe modelirovanie dinamiki transportnykh potokov megapolisa [Mathematical modelling of traffic flow dynamics in a megalopolis area]. Keldysh Institute of Applied Mathematics, Moscow

    Google Scholar 

  2. Greenshields BD (1934) A study of traffic capacity. In: Proceedings (US) highway research board, vol 14, pp 448–494

    Google Scholar 

  3. Ligthill MJ, Whitham FRS (1995) On kinetic waves II. A theory of traffic flow on crowded roads. Proc. Royal Soc Ser A. 229(1178):317–345

    Google Scholar 

  4. Haight FA (1963) Mathematical theories of traffic flow. Academic Press Inc., New York

    MATH  Google Scholar 

  5. Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civil Eng 2:325–378

    Google Scholar 

  6. Beckmann MJ, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven

    Google Scholar 

  7. Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall Inc., Englewood Cliffs, NJ

    Google Scholar 

  8. Cascetta E (2009) Transportation systems analysis: models and applications. Springer, New York

    Book  MATH  Google Scholar 

  9. Patriksson M (2015) The traffic assignment problem: models and methods. Dover Publications Inc., New York

    Google Scholar 

  10. Di X, Liu HX (2016) Boundedly rational route choice behavior: a review of models and methodologies. Transp Res Part B: Methodol 85:142–179

    Article  Google Scholar 

  11. Sheleikhovskii GV (1936) Transportnye osnovaniya kompozitsii gorodskogo plana [Transportation basis of urban plan composition]. Giprogor, Leningrad

    Google Scholar 

  12. Bregman LM (1967) Dokazatel’stvo skhodimosti metoda G.V. Sheleikhovskogo dlya zadachi s transportnymi ogranicheniyami [The proof of Sheleikhovskii method convergence for the problem with transportation constraints]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki 7(1):147–156

    Google Scholar 

  13. Wilson AG (1970) Entropy in Urban and regional modelling. Pion, London

    Google Scholar 

  14. Bershchanskii YM, Meerov MV (1983) Teoriya i metodi resheniya zadach dopolnitel’nosti [Theory and methods for solving complementary problems]. Avtomatika i telemekhanika 6:5–31

    Google Scholar 

  15. Dafermos S (1980) Traffic equilibria and variational inequalities. Transp Sci 14:42–54

    Article  Google Scholar 

  16. Smith MJ (1979) The existence, uniqueness and stability of traffic equilibria. Transp Res Part B 13:295–304

    Article  MathSciNet  Google Scholar 

  17. Kerner BS (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81(20):3797–3800

    Article  MATH  Google Scholar 

  18. Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Kerner BS, Rehborn H (1996) Experimental features and characteristics of traffic jams. Phys Rev E 53(2):1297–1300

    Article  Google Scholar 

  20. Kerner BS, Rehborn H (1996) Experimental properties of complexity in traffic flow. Phys Rev E 53(5):4275–4278

    Article  Google Scholar 

  21. Kerner BS, Rehborn H (1997) Experimental properties of phase transitions in traffic flow. Phys Rev Lett 79(20):4030–4033

    Article  Google Scholar 

  22. Konnov IV (2015) On auction equilibrium models with network applications. Netnomics 16:107–125

    Article  Google Scholar 

  23. Konnov IV (2013) Vector network equilibrium problems with elastic demands. J Global Optim 57:521–531

    Article  MathSciNet  MATH  Google Scholar 

  24. Chiou S-W (2014) Optimization of robust area traffic control with equilibrium flow under demand uncertainty. Comput Oper Res 41:399–411

    Article  MathSciNet  MATH  Google Scholar 

  25. Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transp Res Part A 19:413–427

    Article  Google Scholar 

  26. Krylatov AY, Shirokolobova AP, Zakharov VV (2016) OD-matrix estimation based on a dual formulation of traffic assignment problem. Informatica (Slovenia) 40(4):393–398

    MathSciNet  Google Scholar 

  27. Boyce D (2007) Future research on urban transportation network modeling. Reg Sci Urban Econ 37:427–481

    Article  Google Scholar 

  28. Hollander Y, Prashker JN (2006) The applicability of non-cooperative game theory in transport analysis. Transportation 33:481–496

    Google Scholar 

  29. Altman E, Basar T, Jimenez T, Shimkin N (2002) Competitive routing in networks with polynomial costs. IEEE Trans Autom Control 47(1):92–96

    Article  MathSciNet  MATH  Google Scholar 

  30. Altman E, Combes R, Altman Z, Sorin S (2011) Routing games in the many players regime. In: Proceedings of the 5th international ICST conference on performance evaluation methodologies and tools, pp 525–527

    Google Scholar 

  31. Altman E, Kameda H (2001) Equilibria for multiclass routing in multi-agent networks. In: Proceedings of the IEEE conference on Decision and Control, vol 1, pp 604–609

    Google Scholar 

  32. Krylatov AY, Zakharov VV, Malygin IG (2016) Competitive traffic assignment in road networks. Transp Telecommun 17(3):212–221

    Google Scholar 

  33. Orda A, Rom R, Shimkin N (1993) Competitive routing in multiuser communication networks. IEEE/ACM Trans Netw 1(5):510–521

    Article  Google Scholar 

  34. Xie F, Levinson D (2009) Modeling the growth of transportation networks: a comprehensive review. Netw Spat Econ 9:291–307

    Article  MathSciNet  MATH  Google Scholar 

  35. Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229:281–302

    Article  MathSciNet  MATH  Google Scholar 

  36. Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18(1):1–55

    Article  Google Scholar 

  37. Dantzig GB, Harvey RP, Lansdowne ZF, Robinson DW, Maier SF (1979) Formulating and solving the network design problem by decomposition. Transp Res Part B 13(1):5–17

    Article  Google Scholar 

  38. Castillo E, Menedez JM, Jimenez P (2008) Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transp Res Part B 42:455–481

    Article  Google Scholar 

  39. Shen W, Wynter L (2012) A new one-level convex optimization approach for estimating origin-destination demand. Transp Res Part B 46:1535–1555

    Article  Google Scholar 

  40. Simonelli F, Marzano V, Papola A, Vitiello I (2012) A network sensor location procedure accounting for o-d matrix estimate variability. Transp Res Part B 46:1624–1638

    Article  Google Scholar 

  41. Tong CO, Wong SC (2000) A predictive dynamic traffic assignment model in congested capacity-constrained road networks. Transp Res Part B 34:625–644

    Article  Google Scholar 

  42. Castillo E, Menendez JM, Sanchez-Cambronero S (2008) Traffic estimation and optimal counting location without path enumeration using Bayesian networks. Comput Aided Civil Infrastruct Eng 23(3):189–207

    Article  Google Scholar 

  43. Li X, Ouyang Y (2011) Reliable sensor deployment for network traffic surveillance. Transp Res Part B 45:218–231

    Article  Google Scholar 

  44. Beltran B, Carrese S, Cipriani E, Petrelli M (2009) Transit network design with allocation of green vehicles: a genetic algorithm approach. Transp Res Part C 17:475–483

    Article  Google Scholar 

  45. Kirchhoff G (1847) Ueber die aufloesung der gleichungen, auf welcheman bei der untersuchung der linearen vertheilung galvanischer stroeme gefuehrt wird. Annalen der Physik und Chemie 72:497–508

    Article  Google Scholar 

  46. Maxwell JC (1873) A treatise on electricity and magnetism. The Clarendon Press, Oxford

    Google Scholar 

  47. Duffin R (1947) Nonlinear networks. IIa. Bull Am Math Soc 53:963–971

    Article  MathSciNet  MATH  Google Scholar 

  48. Saishu K, Moriwaki Y (1972) Optimal assignment of traffic flows. Electr Eng Jpn 92:113–120

    Article  Google Scholar 

  49. Sasaki T, Inouye H (1974) Traffic assignment by analogy to electric circuits. In: Transportation and traffic theory, Proceedings of the 6th international symposium on transportation and traffic theory, Sydney, pp 495–518

    Google Scholar 

  50. Carpentier J (1979) Optimal power flows. Int J Electr Power Energy Syst 1(1):3–15

    Article  Google Scholar 

  51. Wood AJ, Wollenberg BF (1984) Power generation, control, and operation. Wiley, New York

    Google Scholar 

  52. Bohn RE, Caramanis MC, Schweppe FC (1984) Optimal pricing in electrical networks over space and time. Rand J Econ 15(3):360–376

    Article  Google Scholar 

  53. Crew MA, Kleindorfer PR (1979) Public utility economics. St. Martins Press, New York

    Book  Google Scholar 

  54. Schweppe FC, Caramanis MC, Tabors RD, Bohn RE (1988) Spot pricing of electricity. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  55. Chowdhury BH, Rahman S (1990) A review of recent advances in economic dispatch. IEEE Trans Power Syst 5(4):1248–1259

    Article  MathSciNet  Google Scholar 

  56. Hogan WW (1992) Contract networks for electric power transmission. J Regul Econ 4:211–242

    Article  Google Scholar 

  57. Chao H-P, Peck S (1996) A market mechanism for electric power transmission. J Regul Econ 10(1):25–59

    Article  Google Scholar 

  58. Hogan WW (1999) Market-based transmission investments and competitive electricity markets. In: John F. Kennedy (ed) School of government, Harvard University, Cambridge, Massachusetts 02138 (Technical report)

    Google Scholar 

  59. O’Neill RP, Baldick R, Helman U, Rothkopf MH, Stewart WR (2005) Dispatchable transmission in RTO markets. IEEE Trans Power Syst 20(1):171–179

    Article  Google Scholar 

  60. Yang J, Zhang G, Ma K (2016) Hierarchical dispatch using two-stage optimisation for electricity markets in smart grid. In J Syst Sci 47(15):3529–3536

    Article  MathSciNet  MATH  Google Scholar 

  61. Dolmatova M (2015) Optimal nodal capacity procurement. Adv Intell Sys Comput 360:415–423

    MATH  Google Scholar 

  62. Ziser CJ, Dong Z, Wong K (2012) Incorporating weather uncertainty in demand forecasts for electricity market planning. Int J Syst Sci 43(7):1336–1346

    Article  Google Scholar 

  63. Mohsenian-Rad A-H, Wong VW, Jatskevich J, Schober R, Leon-Garcia A (2010) Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1(3):320–331

    Article  Google Scholar 

  64. Veit A, Xu Y, Zheng R, Chakraborty N, Sycara KP (2013) Multiagent coordination for energy consumption scheduling in consumer cooperatives. In: 27th AAAI conference on artifficial intelligence, pp 1362–1368 (2013)

    Google Scholar 

  65. Atzeni I, Ordóñez LG, Scutari G, Palomar DP, Fonollosa JR (2013) Demand-side management via distributed energy generation and storage optimization. IEEE Trans Smart Grid 4(2):866–876

    Article  MATH  Google Scholar 

  66. Atzeni I, Ordóñez LG, Scutari G, Palomar DP, Fonollosa JR (2013) Noncooperative and cooperative optimization of distributed energy generation and storage in the demand-side of the smart grid. IEEE Trans Signal Process 61(10):2454–2472

    Article  MathSciNet  MATH  Google Scholar 

  67. Alam M, Ramchurn SD, Rogers A (2013) Cooperative energy exchange for the efficient use of energy and resources in remote communities. In: Proceedings of the 2013 international conference on autonomous agents and multi-agent systems, pp 731–738

    Google Scholar 

  68. Mihailescu R-C, Vasirani M, Ossowski S (2011) Dynamic coalition adaptation for efficient agent based virtual power plants. In: Multiagent system technologies, pp 101–112

    Chapter  Google Scholar 

  69. Nie P-Y (2007) Discrete time dynamic multi-leader-follower games with feedback perfect information. Int J Syst Sci 38(3):247–255

    Article  MathSciNet  MATH  Google Scholar 

  70. Nie P-Y (2011) Dynamic discrete-time multi-leader-follower games with leaders in turn. Comput Math Appl 61(8):2039–2043

    Article  MathSciNet  MATH  Google Scholar 

  71. Pang J-S, Fukushima M (2005) Quasi-variational inequalities, generalized Nash equilibria, and multileader-follower games. Comput Manag Sci 2(1):21–56

    Article  MathSciNet  MATH  Google Scholar 

  72. Kok J (2013) The power matcher: smart coordination for the smart electricity grid. Vrije Universiteit Press, Amsterdam

    Google Scholar 

  73. Zakharov VV, Krylatov AY (2016) Competitive routing of traffic flows by navigation providers. Autom Remote Control 77(1):179–189

    Article  MathSciNet  MATH  Google Scholar 

  74. Zakharov V, Krylatov A (2014) Equilibrium assignments in competitive and cooperative traffic flow routing. IFIP Adv Inf Commun Techn 434:613–620

    Google Scholar 

  75. Zakharov V, Krylatov A, Ivanov D (2013) Equilibrium traffic flow assignment in case of two navigation providers. IFIP Adv Inf Commun Tech 408:156–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Krylatov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krylatov, A., Zakharov, V., Tuovinen, T. (2020). Introduction. In: Optimization Models and Methods for Equilibrium Traffic Assignment. Springer Tracts on Transportation and Traffic, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-34102-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34102-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34101-5

  • Online ISBN: 978-3-030-34102-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics