Skip to main content

Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

Cell or nucleus quantification has recently achieved state-of-the-art performance by using convolutional neural networks (CNNs). In general, training CNNs requires a large amount of annotated microscopy image data, which is prohibitively expensive or even impossible to obtain in some applications. Additionally, when applying a deep supervised model to new datasets, it is common to annotate individual cells in those target datasets for model re-training or fine-tuning, leading to low-throughput image analysis. In this paper, we propose a novel adversarial domain adaptation method for cell/nucleus quantification across multimodality microscopy image data. Specifically, we learn a fully convolutional network detector with task-specific cycle-consistent adversarial learning, which conducts pixel-level adaptation between source and target domains and then completes a cell/nucleus detection task. Next, we generate pseudo-labels on target training data using the detector trained with adapted source images and further fine-tune the detector towards the target domain to boost the performance. We evaluate the proposed method on multiple cross-modality microscopy image datasets and obtain a significant improvement in cell/nucleus detection compared to the reference baselines and a recent state-of-the-art deep domain adaptation approach. In addition, our method is very competitive with the fully supervised models trained with all real target training labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_43

    Chapter  Google Scholar 

  2. Bermúdez-Chacón, R., Becker, C., Salzmann, M., Fua, P.: Scalable unsupervised domain adaptation for electron microscopy. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_38

    Chapter  Google Scholar 

  3. Bousmalis, K., et al.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR, pp. 3722–3731 (2017)

    Google Scholar 

  4. Ganin, Y., et al.: Domain-adversarial training of neural networks. JMLR 17(1), 2096-2030 (2016)

    MathSciNet  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998 (2018)

    Google Scholar 

  8. Hong, W., Wang, Z., Yang, M., Yuan, J.: Conditional generative adversarial network for structured domain adaptation. In: CVPR, pp. 1335–1344 (2018)

    Google Scholar 

  9. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017)

    Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_33

    Chapter  Google Scholar 

  12. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp. 1–15 (2015)

    Google Scholar 

  14. Litjens, G., et al.: A survey on deep learning in medical image analysis. MIA 42, 60–88 (2017)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  16. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  17. Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X.: Adversarial domain adaptation for classification of prostate histopathology whole-slide images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 201–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_23

    Chapter  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shrivastava, A., et al.: Learning from simulated and unsupervised images through adversarial training. In: CVPR, pp. 2242–2251 (2017)

    Google Scholar 

  20. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE TMI 35(5), 1196–1206 (2016)

    Google Scholar 

  21. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 2962–2971 (2017)

    Google Scholar 

  22. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting with fully convolutional regression networks. In: DLMIA Workshop, pp. 1–8 (2015)

    Google Scholar 

  23. Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. MIA 44, 245–254 (2018)

    Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Cancer Institute of the National Institutes of Health under Award Number R21CA237493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyong Xing .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3993 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, F., Bennett, T., Ghosh, D. (2019). Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics