Skip to main content

Non-plasmonic NIR-Activated Photothermal Agents for Photothermal Therapy

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Photothermal therapies rely on various types of optically active nanomaterials, such as carbon, silicon, titanium dioxide, iron-based, polymeric, and rare earth-doped nanomaterials, which are aiming to convert light into heat. However, lack of clear guidelines and standardized approaches to determine their photothermal properties hinders quantitative comparison between them and impedes focusing on the most promising ones. Therefore, the major motivation for this chapter is to highlight the recent progress, constrained to last 5 years, in the field of non-plasmonic photothermal agents activated in NIR spectral range, to qualitatively compare wide selection of available materials and to essay a quantitative comparison by adopting a simple, but effective approach. Moreover, the advantages and disadvantages of different photothermal agents were discussed in terms of their cytotoxicity, easiness of their biofunctionalization, and the minimal dose for efficient heat generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun X et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  2. Hu Z, Li J, Huang Y, Chen L, Li Z (2015) Functionalized graphene/C60nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Adv 5:654–664

    Article  CAS  Google Scholar 

  3. Gangopadhyay M et al (2015) Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem Photobiol Sci 14:1329–1336

    Article  CAS  Google Scholar 

  4. Gary-Bobo M et al (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423:509–515

    Article  CAS  Google Scholar 

  5. Marciniak L, Pilch A, Arabasz S, Jin D, Bednarkiewicz A (2017) Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. Nanoscale

    Google Scholar 

  6. Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W (2011) Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors. Appl Phys B Lasers Opt 103:847–852

    Article  CAS  Google Scholar 

  7. Roper DK, Ahn W, Hoepfner M (2007) Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C

    Google Scholar 

  8. Shibu ES, Hamada M, Murase N, Biju V (2013) Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photochem Photobiol C: Photochem Rev 15:53–72

    Article  CAS  Google Scholar 

  9. Shanmugam V, Selvakumar S, Yeh C-S (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287

    Article  CAS  Google Scholar 

  10. Bao Z, Liu X, Liu Y, Liu H, Zhao K (2016) Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J Pharm Sci 11:349–364

    Article  Google Scholar 

  11. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  12. Jaque D et al (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  CAS  Google Scholar 

  13. Cheng L, Wang C, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chinese J Clin Oncol 41:18–26

    Article  CAS  Google Scholar 

  14. Singh R, Torti SV (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65:2045–2060

    Article  CAS  Google Scholar 

  15. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  CAS  Google Scholar 

  16. Chen YW, Su YL, Hu SH, Chen SY (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105:190–204

    Article  CAS  Google Scholar 

  17. Qu Y et al (2018) Advancements of graphene-based nanomaterials in biomedicine. Mater Sci Eng C 90:764–780

    Article  CAS  Google Scholar 

  18. Kalluru P, Vankayala R, Chiang CS, Hwang KC (2016) Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 95:1–10

    Article  CAS  Google Scholar 

  19. Sahu A, Choi WI, Lee JH, Tae G (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248

    Article  CAS  Google Scholar 

  20. Kim SH et al (2015) In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules 16:3519–3529

    Article  CAS  Google Scholar 

  21. Gollavelli G, Ling YC (2014) Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 35:4499–4507

    Article  CAS  Google Scholar 

  22. Jiang B-P et al (2014) Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. J Mater Chem B 2:7141–7148

    Article  CAS  Google Scholar 

  23. Sheng Z et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243

    Article  CAS  Google Scholar 

  24. Lin LS et al (2014) Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8:3876–3883

    Article  CAS  Google Scholar 

  25. Regli S, Kelly JA, Shukaliak AM, Veinot JGC (2012) Photothermal response of photoluminescent silicon nanocrystals. J Phys Chem Lett 3:1793–1797

    Article  CAS  Google Scholar 

  26. Su Y et al (2014) Silicon nanowire-based therapeutic agents for in vivo tumor near-infrared photothermal ablation. J Mater Chem B 2:2892–2898

    Article  CAS  Google Scholar 

  27. Xia B et al (2017) Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer. Acta Biomater 51:197–208

    Article  CAS  Google Scholar 

  28. Peng Z et al (2017) Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 343:256–277

    Article  CAS  Google Scholar 

  29. Miao ZH et al (2016) Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 8:15904–15910

    Article  CAS  Google Scholar 

  30. Torti SV et al (2007) Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int J Nanomedicine 2:707–714

    CAS  Google Scholar 

  31. Saeed M et al (2018) Controllable synthesis of Fe3O4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J Mater Chem B 6:3800–3810

    Article  CAS  Google Scholar 

  32. Huang C-C et al (2015) New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale

    Google Scholar 

  33. Marciniak L et al (2016) Water dispersible LiNdP4O12nanocrystals: new multifunctional NIR-NIR luminescent materials for bio-applications. J Lumin 176:144–148

    Article  CAS  Google Scholar 

  34. Chu M et al (2013) Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34:4078–4088

    Article  CAS  Google Scholar 

  35. Chen H et al (2014) Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J Mater Chem B

    Google Scholar 

  36. Suo H, Zhao X, Zhang Z, Guo C (2017) 808 nm light-triggered thermometer-heater upconverting platform based on Nd3+-sensitized yolk-Shell GdOF@SiO2. ACS Appl Mater Interfaces 9:43438–43448

    Article  CAS  Google Scholar 

  37. Du P, Luo L, Park HK, Yu JS (2016) Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: a novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chem Eng J 306:840–848

    Article  CAS  Google Scholar 

  38. Marciniak L, Pilch A, Arabasz S, Jin D, Bednarkiewicz A (2017) Heterogeneously Nd 3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. Nanoscale 9:8288–8297

    Article  CAS  Google Scholar 

  39. Suo H et al (2017) All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window. J Mater Chem C 5:1501–1507

    Article  CAS  Google Scholar 

  40. Geng J et al (2015) Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy. Small 11:1603–1610

    Article  CAS  Google Scholar 

  41. Guo W et al (2017) TiO2-xbased nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem Mater 29:9262–9274

    Article  CAS  Google Scholar 

  42. Ou G et al (2016) Photothermal therapy by using titanium oxide nanoparticles. Nano Res 9:1236–1243

    Article  CAS  Google Scholar 

  43. Li D et al (2016) Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci Appl 5(1–8):e16120

    Article  CAS  Google Scholar 

  44. Cheng Y et al (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130:10643–10647

    Article  CAS  Google Scholar 

  45. Wei X et al (2018) A designed synthesis of multifunctional carbon nanoframes for simultaneous imaging and synergistic chemo-photothermal cancer therapy. New J Chem 42:923–929

    Article  CAS  Google Scholar 

  46. Sheng Z et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243

    Article  CAS  Google Scholar 

  47. Maestro LM et al (2013) Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale 5:7882

    Article  CAS  Google Scholar 

  48. Miao W, Shim G, Lee S, Oh YK (2014) Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials 35:4058–4065

    Article  CAS  Google Scholar 

  49. Wang Y-W et al (2013) Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J Mater Chem B 1:5762

    Article  CAS  Google Scholar 

  50. Hu SH, Chen YW, Hung WT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754

    Article  CAS  Google Scholar 

  51. Tao Y, Ju E, Ren J, Qu X (2014) Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35:9963–9971

    Article  CAS  Google Scholar 

  52. Wang S et al (2014) Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials 35:9473–9483

    Article  CAS  Google Scholar 

  53. Romero-Aburto R et al (2013) Fluorinated graphene oxide; a new multimodal material for biological applications. Adv Mater 25:5632–5637

    Article  CAS  Google Scholar 

  54. Jung HS et al (2014) Nanographene oxide À hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 8:260–268

    Article  CAS  Google Scholar 

  55. Wu M-C, Deokar AR, Liao J-H, Shih P-Y, Ling Y-C (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281

    Article  CAS  Google Scholar 

  56. Hassan M, Gomes VG, Dehghani A, Ardekani SM (2018) Engineering carbon quantum dots for photomediated theranostics. Nano Res 11:1–41

    Article  CAS  Google Scholar 

  57. Ge J et al (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27:4169–4177

    Article  CAS  Google Scholar 

  58. Geng B et al (2018) NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities. Carbon N Y 134:153–162

    Article  CAS  Google Scholar 

  59. Zheng M et al (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces 8:23533–23541

    Article  CAS  Google Scholar 

  60. Ge J et al (2016) Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv Healthc Mater 5:665–675

    Article  CAS  Google Scholar 

  61. Lee C et al (2016) Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy. Theranostics 6:2196–2208

    Article  CAS  Google Scholar 

  62. Li Y, Zhang X, Zheng M, Liu S, Xie Z (2016) Dopamine carbon nanodots as effective photothermal agents for cancer therapy. RSC Adv 6:54087–54091

    Article  CAS  Google Scholar 

  63. Hashida Y et al (2014) Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release 173:58–66

    Article  CAS  Google Scholar 

  64. Zhang M et al (2017) Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon N Y 123:70–83

    Article  CAS  Google Scholar 

  65. Mori K, Kawaguchi M, Fujigaya T, Ohno J, Ikebe T (2018) Polymer-coated carbon nanotubes as a molecular heater platform for hyperthermic therapy. J Hard Tissue Biol 27:139–146

    Article  CAS  Google Scholar 

  66. Han Z, Han X, Wang Z, Wu S, Zheng R (2015) Thioaptamer conjugated single-wall carbon nanotubes in human breast cancer targeted photothermal therapy in-vivo and in-vitro. Int J Clin Exp Med 9:58–68

    Google Scholar 

  67. Nair LV, Nagaoka Y, Maekawa T, Sakthikumar D, Jayasree RS (2014) Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy. Small 10:2771–2775

    Article  CAS  Google Scholar 

  68. Lin Z et al (2015) Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci Rep 5:1–10

    Google Scholar 

  69. Chen D et al (2014) Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv Funct Mater 24:6621–6628

    Article  CAS  Google Scholar 

  70. del Rosal B et al (2017) Nd3+ ions in nanomedicine: perspectives and applications. Opt Mater (Amst) 63:185–196

    Article  CAS  Google Scholar 

  71. del Rosal B, Ximendes E, Rocha U, Jaque D (2017) In vivo luminescence nanothermometry: from materials to applications. Adv Opt Mater 5

    Google Scholar 

  72. Liu G et al (2016) Investigation into optical heating and applicability of the thermal sensor bifunctional properties of Yb 3+ sensitized Tm 3+ doped Y 2 O 3, YAG and LaAlO 3 phosphors. RSC Adv 6:97676–97683

    Article  CAS  Google Scholar 

  73. Suo H, Guo C, Li T (2016) Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+. J Phys Chem C 120:2914–2924

    Article  CAS  Google Scholar 

  74. Rocha U et al (2016) Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+:LaF3multifunctional nanoparticles. J Lumin 175:149–157

    Article  CAS  Google Scholar 

  75. Carrasco E et al (2015) Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv Funct Mater 25:615–626

    Article  CAS  Google Scholar 

  76. Rocha U et al (2014) Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl Phys Lett 104:053703

    Article  CAS  Google Scholar 

  77. Kolesnikov IE et al (2017) Nd3+ single doped YVO4 nanoparticles for sub-tissue heating and thermal sensing in the second biological window. Sensors Actuators B Chem 243:338–345

    Article  CAS  Google Scholar 

  78. Xu S et al (2017) 808 nm laser induced photothermal effect on Sm3+/Nd3+doped NaY(WO4)2 microstructures. Sensors Actuators B Chem 240:386–391

    Article  CAS  Google Scholar 

  79. Lozano-Gorrín AD et al (2018) Lanthanide-doped Y3Ga5O12 garnets for nanoheating and nanothermometry in the first biological window. Opt Mater (Amst) 84:46–51

    Article  CAS  Google Scholar 

  80. Liu G et al (2016) Investigation into optical heating and applicability of the thermal sensor bifunctional properties of Yb3+ sensitized Tm3+ doped Y2O3, YAG and LaAlO3 phosphors. RSC Adv 6:97676–97683

    Article  CAS  Google Scholar 

  81. Suo H et al (2015) Thermometric and optical heating bi-functional properties of upconversion phosphor Ba 5 Gd 8 Zn 4 O21:Yb3+/Tm3+. J Mater Chem C 3:7379–7385

    Article  CAS  Google Scholar 

  82. Li P et al (2018) Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater Sci 6:877–884

    Article  CAS  Google Scholar 

  83. Zhu X et al (2016) Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun

    Google Scholar 

  84. Zhang Y et al (2018) Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+core-shell particles. Opt Mater Express 8:1820–1832

    Google Scholar 

  85. Dey R, Pandey A, Rai VK (2014) Er3+-Yb3+ and Eu3+-Er3+-Yb 3+ codoped Y2O3 phosphors as optical heater. Sensors Actuators B Chem 190:512–515

    Article  CAS  Google Scholar 

  86. Mahata MK, Kumar K, Rai VK (2015) Er3+–Yb3+doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior. Sensors Actuators B Chem 209:775–780

    Article  CAS  Google Scholar 

  87. Dey R, Pandey A, Rai VK (2014) The Er3+-Yb3+codoped La2O3phosphor in finger print detection and optical heating. Spectrochim Acta – Part A Mol Biomol Spectrosc 128:508–513

    Article  CAS  Google Scholar 

  88. Sun Z et al (2017) Nanostructured La2O3: Yb3+/Er3+: temperature sensing, optical heating and bio-imaging application. Mater Res Bull 92:39–45

    Article  CAS  Google Scholar 

  89. Pandey A, Rai VK, Kumar V, Kumar V, Swart HC (2015) Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: an optical heating phosphor. Sensors Actuators B Chem 209:352–358

    Article  CAS  Google Scholar 

  90. Du P, Luo L, Yu JS (2017) Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating. Microchim Acta 184:2661–2669

    Article  CAS  Google Scholar 

  91. Lu H et al (2017) Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: temperature sensor and optical heater. J Lumin 191:13–17

    Article  CAS  Google Scholar 

  92. Shao Q et al (2017) Enhancing the upconversion luminescence and photothermal conversion properties of ∼800 nm excitable core/shell nanoparticles by dye molecule sensitization. J Colloid Interface Sci 486:121–127

    Article  CAS  Google Scholar 

  93. Liu G, Wu L, Wei X, Zhang D, Hu L (2018) Investigation on laser-induced heating in NaYbF4:Er3+ for accurate photo-thermal conversion with temperature feedback. Opt Commun 426:418–422

    Article  CAS  Google Scholar 

  94. Suo H et al (2017) All-in-one thermometer-heater up-converting platform YF3:Yb3+,Tm3+ operating in the first biological window. J Mater Chem C 5:1501–1507

    Article  CAS  Google Scholar 

  95. Sun Z et al (2017) High sensitivity thermometry and optical heating bi-function of Yb3+/Tm3+ co-doped BaGd2ZnO5 phosphors. Curr Appl Phys 17:255–261

    Article  Google Scholar 

  96. Guo B et al (2016) A Porphyrin-based conjugated polymer for highly efficient in vitro and in vivo Photothermal therapy. Small 12:6243–6254

    Article  CAS  Google Scholar 

  97. Li S et al (2016) Near-infrared (NIR)-absorbing conjugated polymer dots as highly effective Photothermal materials for in vivo cancer therapy. Chem Mater 28:8669–8675

    Article  CAS  Google Scholar 

  98. Lyu Y et al (2016) Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10:4472–4481

    Article  CAS  Google Scholar 

  99. Lyu Y et al (2017) Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew Chemie – Int Ed 56:9155–9159

    Article  CAS  Google Scholar 

  100. Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K (2016) Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J Am Chem Soc 138:9049–9052

    Article  CAS  Google Scholar 

  101. MacNeill CM, Wailes EM, Levi-Polyachenko NH (2013) A comparative study of the photothermal efficiency of electrically conducting poly(3,4-ethylenedioxythiophene)-based nanomaterials with cancer cells. J Nanosci Nanotechnol 13:3784–3791

    Article  CAS  Google Scholar 

  102. Chen Y et al (2015) Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J Chem 39:4987–4993

    Article  CAS  Google Scholar 

  103. Hong C, Kang J, Kim H, Lee C (2012) Photothermal properties of inorganic nanomaterials as therapeutic agents for cancer thermotherapy. J Nanosci Nanotechnol 12:4352–4355

    Article  CAS  Google Scholar 

  104. Hong C, Lee C (2014) In vitro cell tests of pancreatic malignant tumor cells by photothermotherapy based on DMSO porous silicon colloids. Lasers Med Sci 29:221–223

    Article  Google Scholar 

  105. Xu W et al (2018) A scalable synthesis of biodegradable black mesoporous silicon nanoparticles for highly efficient photothermal therapy. ACS Appl Mater Interfaces

    Google Scholar 

  106. Drobczyński S et al (2017) Toward controlled photothermal treatment of single cell: optically induced heating and remote temperature monitoring in vitro through double wavelength optical tweezers. ACS Photonics 4:1993–2002

    Article  CAS  Google Scholar 

  107. Lee C, Hong C, Lee J, Son M, Hong SS (2012) Comparison of oxidized porous silicon with bare porous silicon as a photothermal agent for cancer cell destruction based on in vitro cell test results. Lasers Med Sci 27:1001–1008

    Article  Google Scholar 

  108. Bing X, Bin W, Zhenyu C, Qi Z, Jisen S (2015) Near-infrared light-triggered intracellular delivery of anticancer drugs using porous silicon nanoparticles conjugated with IR820 dyes. Adv Mater Interfaces 3:1500715

    Google Scholar 

  109. Wang S et al (2018) Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells. Biomater Sci

    Google Scholar 

  110. Ren W et al (2015) A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv Healthc Mater 4:1526–1536

    Article  CAS  Google Scholar 

  111. Hong C et al (2012) In-vitro cell tests using doxorubicin-loaded polymeric TiO2 nanotubes used for cancer photothermotherapy. Anti-Cancer Drugs 23:553–560

    Article  CAS  Google Scholar 

  112. Oh Y, Je JY, Moorthy MS, Seo H, Cho WH (2017) pH and NIR-light-responsive magnetic iron oxide nanoparticles for mitochondria-mediated apoptotic cell death induced by chemo-photothermal therapy. Int J Pharm 531:1–13

    Article  CAS  Google Scholar 

  113. Zhao Y et al (2015) Phase-shifted PFH@PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation. ACS Appl Mater Interfaces 7:14231–14242

    Article  CAS  Google Scholar 

  114. Espinosa A et al (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446

    Article  CAS  Google Scholar 

  115. Shen S et al (2013) CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5:8056

    Article  CAS  Google Scholar 

  116. Yang J, Fan L, Xu Y, Xia J (2017) Iron oxide nanoparticles with different polymer coatings for photothermal therapy. J Nanopart Res 19:333

    Article  CAS  Google Scholar 

  117. Hsiao CW et al (2015) Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials 56:26–35

    Article  CAS  Google Scholar 

  118. Zhang J, Li J, Chen S, Kawazoe N, Chen G (2016) Preparation of gelatin/Fe3O4 composite scaffolds for enhanced and repeatable cancer cell ablation. J Mater Chem B 4:5664–5672

    Article  CAS  Google Scholar 

  119. Pązik R et al (2017) Non-contact Mn1-xNixFe2O4 ferrite nano-heaters for biological applications-heat energy generated by NIR irradiation. RSC Adv 7:18162–18171

    Article  Google Scholar 

Download references

Acknowledgments

A.B. acknowledges the FET Open project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 801305. K.K and K.E acknowledge “High sensitive thermal imaging for biomedical and microelectronic application” project is carried out within the First Team program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Marciniak or A. Bednarkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marciniak, L., Kniec, K., Elzbieciak, K., Bednarkiewicz, A. (2020). Non-plasmonic NIR-Activated Photothermal Agents for Photothermal Therapy. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_12

Download citation

Publish with us

Policies and ethics