Skip to main content
Log in

Comparison of oxidized porous silicon with bare porous silicon as a photothermal agent for cancer cell destruction based on in vitro cell test results

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In the systematic administration of cancer, cancer markers are normally used to help the therapeutic agents access the cancer cells spontaneously. Therefore, it is essential to functionalize the surface of porous silicon (pSi) for cancer markers to attach well to pSi in systematic administration because most cancer markers does not attach easily to pSi. The thermal oxidation of pSi is adopted most widely as a surface functionalization technique for pSi. This study examined the photothermal properties and cancer cell-killing ability of oxidized pSi (pSiO). The temperature measurement and in vitro cell tests including the annexin V-fluorescein isothiocyanate (FITC) apoptosis assay tests, MTT assay tests, and Trypan blue cell death assay tests were performed to compare the photothermal properties and the cytotoxic effect of pSiO with those of pSi in combination with an 808-nm NIR laser. pSiO showed lower photothermal properties and a lower cell-death rate than bare pSi. On the other hand, the pSiO treatment used in combination with an NIR laser treatment showed a cytotoxic effect high enough to kill a considerable portion of the cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wust P, Rau B, Gremmler M, Schlag P, Jordan A, Loffel J, Riess H, Ferix R (1995) Radio-thermotherapy in multimodal surgical treatment concepts. Onkologie 18:110–121

    Article  Google Scholar 

  2. Van der Zee J (2002) Heating the patient: A promising approach? Ann Oncol 13:1173–1184

    Article  PubMed  Google Scholar 

  3. Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys 16:535–549

    Article  PubMed  CAS  Google Scholar 

  4. Anderson RL, Kapp DS (1990) Hyperthermia in cancer therapy: current status. Med J Aust 152:310–315

    PubMed  CAS  Google Scholar 

  5. Overgaard J, Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, Bentzen SM (1995) Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345:540–543

    Article  PubMed  CAS  Google Scholar 

  6. Hirsch LR, Stafford RL, Baukson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  PubMed  CAS  Google Scholar 

  7. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy using gold nanoparticles. Laser Med Sci 23:217–228

    Article  Google Scholar 

  8. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi H, Niidome T, Nariai A, Niidome T, Yamada S (2006) Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 35:500–501

    Article  CAS  Google Scholar 

  10. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    PubMed  CAS  Google Scholar 

  11. Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xia Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261

    Article  CAS  Google Scholar 

  12. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Article  PubMed  CAS  Google Scholar 

  13. Lee C, Kim H, Cho Y, Lee WI (2007) The properties of porous silicon as a therapeutic agent via the new photodynamic therapy. J Mater Chem 17:2648–2653

    Article  CAS  Google Scholar 

  14. Lee C, Hong C, Kim H, Kang J, Zheng HM (2010) TiO2 nanotubes as a therapeutic agent for cancer thermotherapy. Potochem Phobiol 86:981–989

    Article  CAS  Google Scholar 

  15. Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI (2008) Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem 18:4790–4795

    Article  CAS  Google Scholar 

  16. Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater 11:318–321

    Article  CAS  Google Scholar 

  17. Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7:1033–1037

    Article  CAS  Google Scholar 

  18. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  PubMed  CAS  Google Scholar 

  19. Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ (2004) Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 20:11264–11269

    Article  PubMed  CAS  Google Scholar 

  20. Charnay C, Begu S, Tourne-Peteilh C, Nicole L, Lerner DA, Devoisselle JM (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm 57:533–540

    Article  PubMed  CAS  Google Scholar 

  21. Coffer JL, Montchamp JL, Aimone JB, Weis RP (2003) Routes to calcified porous silicon: implications for drug delivery and biosensing. Phys Status Solidi A Appl Res 197:336–339

    Article  CAS  Google Scholar 

  22. Vaccari L, Canton D, Zaffaroni N, Villa R, Tormen M, di Fabrizio E (2006) Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng 83:1598–1601

    Article  CAS  Google Scholar 

  23. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653

    Article  PubMed  CAS  Google Scholar 

  24. Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove CF, Swaan PW (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res 20(1):110–116

    Article  PubMed  CAS  Google Scholar 

  25. Parkhutik V, Chirvony V, Matveyeva E (2007) Optical properties of porphyrin molecules immobilized in nano-porous silicon. Biomol Eng 24:71–73

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt R (2006) Photosensitized generation of singlet oxygen. Photochem Photobiol 82(5):1161–1177

    Article  PubMed  CAS  Google Scholar 

  27. Chirvony V, Bolotin V, Matveeva E, Parkhutik V (2006) Fluorescence and O-1(2) generation properties of porphyrin molecules immobilized in oxidized nanoporous silicon matrix. J Photochem Photobiol A Chem 181(1):106–113

    Article  CAS  Google Scholar 

  28. Salonen J, Lehto VP, Laine E (1997) Thermal oxidation of free-standing porous silicon films. Appl Phys Lett 70(5):637–639

    Article  CAS  Google Scholar 

  29. Buriak JM, Allen MJ (1998) Lewis acid-mediated functionalization of porous silicon with substituted alkenes. J Am Chem Soc 120:1339–1340

    Article  CAS  Google Scholar 

  30. Salonen J, Laine E, Niinisto L (2000) Studies of thermally carbonized porous silicon surfaces. Phys Stat Sol (a) 182:123–126

    Article  CAS  Google Scholar 

  31. Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 6:321–328

    Article  PubMed  CAS  Google Scholar 

  32. Azrak RG, Frank CL, Ling X, Slocum HK, Li F, Foster BA, Rustum YM (2006) The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. Mol Cancer Ther 5:2540–2548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Engineering and Science Foundation (KOSEF) through ‘the 2007 National Research Lab Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Hong, C., Lee, J. et al. Comparison of oxidized porous silicon with bare porous silicon as a photothermal agent for cancer cell destruction based on in vitro cell test results. Lasers Med Sci 27, 1001–1008 (2012). https://doi.org/10.1007/s10103-011-1032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1032-9

Keywords

Navigation