Skip to main content

Advances in Agronanotechnology and Future Prospects

  • Chapter
  • First Online:
Nanotechnology for Food, Agriculture, and Environment

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1030 Accesses

Abstract

Nanotechnology provides an excellent resource to address the many technical issues faced by the agricultural industry. Current traditional and nontraditional farming techniques are not able to herald in changes that are able to increase productivity and address the issue of chemical contamination of the ecosystem and our water supply; as a consequence of our farming practices, a technological revolutionalization is needed to address all these current-day farming woes. While the infiltration of nanotechnology into nanoproducts such as cellphone has been easily accepted, the application of nanoparticles in agriculture, however, raises several questions and reservations as the effect of this material has to be tested at the geosphere level and the technology has to be one that can be adopted across different economies and development status. In this chapter, we review the various ways where nanoparticles may be used in field application of the agricultural industry. Nanoparticles have been used to improve nutrient acquisition, soil condition, increase yield and growth, pests and disease control, understanding mechanisms of host-parasite interactions, bioremediation of soil and water, and precision farming. While nanotechnology has the potential to address twenty-first century issues, their adoption into the industry will require further research to determine safety and effect to environment and human. Parallel to these studies, there also needs to be awareness building among the agriculturists on the potential of this technology. Failure to influence the public and to embrace this technology will only deny us the opportunity to visibly improve food production, safety, and security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  • Acharyulu N, Dubey R, Swaminadham V, Kollu P, Kalyani R, Pammi S (2014) Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. Intl J Eng 3:639–641

    Google Scholar 

  • Akbari A, Wu J (2016) Cruciferin coating improves the stability of chitosan nanoparticles at low pH. J Mater Chem 4:4988–5001

    Article  CAS  Google Scholar 

  • Almeelbi T, Bezbaruah A (2014) Nanoparticle-sorbed phosphate: iron and phosphate bioavailability studies with Spinacia oleracea and Selenastrum capricornutum. ACS Sustain Chem Eng 2:1625–1632

    Article  CAS  Google Scholar 

  • Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kim JH (2015) Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 10:1977–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awwad A, Albiss B, Salem N (2015) Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med J 2:91–101

    Google Scholar 

  • Baker S, Harini BP, Rakshith D, Satish S (2013a) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388

    CAS  Google Scholar 

  • Baker S, Rakshith DK, Kavitha S, Santosh P, Kavitha HU, Rao Y, Satish S (2013b) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ban JJ, Lee M, Im W, Kim M (2015) Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 461:76–79

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nanobiofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Bhor G, Deokar G, Hinge S, Singh L, Nalwade A (2014) Green synthesis of silver nanoparticles using fruit extract of bitter gourd and evaluation of their antibacterial activity against human and plant pathogenic bacteria. Int J Adv Scientific Technical Res 4:506–518

    Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak P (2012) Applications of nanotechnology in agriculture and food sciences. Intl Sci Inno Disc 2:21–36

    Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxil Chem 27:1922–1931

    Article  Google Scholar 

  • Chaudhary M (2017) Nanotechnology: resource management for sustainable agriculture. Ind Res J Genet Biotech 9:310–313

    Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen J, Liu S, Ye R, Cai Y et al (2013) Angiotensin-I converting enzyme (ACE) 642 inhibitory tripeptides from rice protein hydrolysate: purification and 643 characterization. J Funct Foods 5:1684–1692

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) gold with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9:365. https://doi.org/10.1186/1556-276X-9-365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cursino L, Li Y, Zaini PA, Fuente DL et al (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199

    Article  CAS  PubMed  Google Scholar 

  • Day L, Williams R, Otter D, Augustin M (2015) Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows. J Dairy Sci 98:3633–3644

    CAS  PubMed  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotech 5:91. https://doi.org/10.1038/nnano20102

    Article  CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:1. https://doi.org/10.1038/nnano20102

    Article  CAS  Google Scholar 

  • Diallo M, Street A, Sustich R, Duncan J, Savage N (2009) Nanotechnology applications for clean water: solutions for improving water quality. Nanotech Appl Clean Water 585–587

    Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: J Nanosci Nanotechnol 3:33002

    Google Scholar 

  • El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118

    Article  Google Scholar 

  • Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnology 10:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan W, Gao W, Zhang C, Tjiu WW, Pan J (2012) Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. J Mater Chem 22(48):25108

    Article  CAS  Google Scholar 

  • Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Nanotechnology applications for clean water. Elsevier, London, pp 115–130

    Chapter  Google Scholar 

  • Fatta-Kassinos D, Kalavrouziotis I, Koukoulakis P, Vasquez M (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare mill). Chemosphere 91:506–511

    Article  CAS  PubMed  Google Scholar 

  • Gahlawat G, Shikha S, Chaddha BS, Chaudhuri SR, Mayilraj S, Choudhury AR (2016) Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb Cell Factories 15:25. https://doi.org/10.1186/s12934-016-0422-x

    Article  CAS  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostructure Chem 4:115. https://doi.org/10.1007/s40097-014-0115-0

    Article  Google Scholar 

  • Giardi MT, Guzzella L, Euzet P, Rouillon R, Esposito D (2005) Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. Environ Sci Technol 39:5378–5384

    Article  CAS  PubMed  Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Greenhalgh K, Turos E (2009) In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Nanomedicine 5:46–54

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Clemente Z, de Oliveira JL, Campos EV, Chalupe VC, Jonsson CM, de Lima R, Sanches G, Nishisaka CS, Rosa AH, Oehlke K, Greiner R, Fraceto LF (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562–572

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. Nanosci Nanotechnol 16:1231–1234

    Article  CAS  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agricultural, food, and water nanotechnologies for the poor. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD (2012) Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 3:737–744

    Article  CAS  PubMed  Google Scholar 

  • Hiregoudar S (2014) Application of nanotechnology in enhancing quality of agricultural produce. http://www.isssonline.in/isss2014/agri.html

  • Hu R, Huang X, Huang J, Li Y, Zhang C, Yin Y, Chen Z, Jin Y, Cai J, Cui F (2015) Long and short term health effect of pesticides exposure: A cohort Study from China. PLoS One 10(6):e0128766. https://doi.org/10.1371/journalpone0128766

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Reddy KN, Fletcher RS, Pennington D (2018) UAV low-altitude remote sensing for precision weed management. Weed Technol 32:2–6

    Article  Google Scholar 

  • Huijskens E, Smit L, Rossen J, Heederik D, Koopmans M (2016) Evaluation of patients with community-acquired pneumonia caused by zoonotic pathogens in an area with a high density of animal farms. Zoonoses Public Health 63:160–166

    Article  CAS  PubMed  Google Scholar 

  • Ingale AG, Chaudhari A (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:1–7

    Article  CAS  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem Biophys B 110:7238–7248

    Article  CAS  Google Scholar 

  • Jampílek J, Králová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S22:321–361

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. https://doi.org/10.3389/fchem201500064

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP (2015) Green synthesis of silver nanoparticles using Croton sparsiflorus Morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc 139:200–205

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mat Sci EngC 61:720–727

    Article  CAS  Google Scholar 

  • Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220

    Article  CAS  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268. https://doi.org/10.1371/journalpone0029268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Zhang X, Liang X-J (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31:593–606

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908

    Article  PubMed  Google Scholar 

  • Laborie MPG (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia LA, Rojas OJ (eds) The nanoscience and Technology of Renewable Biomaterials. Wiley, Chichester

    Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Bai Y, Liu C, Yang Z, Feng X, Lu X, Laak NK, Chan KY (2009) Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis. Environ Sci Technol 43:5423–5428

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171

    CAS  Google Scholar 

  • Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M, Bakshi MS (2013) Green chemistry of zein protein toward the synthesis of bioconjugated nanoparticles: understanding unfolding, fusogenic behavior, and hemolysis. ACS Sustain Chem Eng 1:627–639

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornament Horticult Plants 3(1):25–32

    Google Scholar 

  • Marziye Aboli P, Yazdan M, Roostaei A, Khani M, Negahdari M, Rahimi G (2014) Evaluation of the antifungal effect of magnesium oxide nanoparticles on Fusarium oxysporum f. Sp. lycopersici, pathogenic agent of tomato. Eur J Exp Biol 4(3):151–156

    Google Scholar 

  • McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Medda S, Hajra A, Dey U, Bose P, Mondal NK (2015) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp and Aspergillus sp. Appl Nanoscience 5:875–880

    Article  CAS  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta K, Nautiyal C (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63. https://doi.org/10.2147/NSAS39409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, pp 577–635

    Google Scholar 

  • Nangmenyi G, Economy J (2009) Nanometallic particles for oligodynamic microbial disinfection. In: Nanotechnology applications for clean water solutions for improving water quality water. Elsevier, London, pp 3–15

    Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M et al (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  PubMed  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination - a review. Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255

    Article  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Padil VVT, ÄŒerník M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889. https://doi.org/10.2147/IJNS40599

    Article  PubMed Central  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J. https://doi.org/10.1155/2014/829894

    Article  CAS  Google Scholar 

  • Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotech 4:669. https://doi.org/10.1038/nnano2009235

    Article  CAS  Google Scholar 

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb201701014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    PubMed  Google Scholar 

  • Prasad R, Thirugnanasanbandham K (2019) Advances Research on Nanotechnology for Water Technology. Springer International Publishing. https://www.springer.com/us/book/9783030023805

  • Prasanna BM (2007) Nanotechnology in agriculture. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rabab MAE, El-Shafey RAS (2013) Inhibition effects of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egypt J Agric Res 91:1271–1283

    Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315. https://doi.org/10.4236/jbnb2012322039

    Article  CAS  Google Scholar 

  • Ramimoghadam D, Bagheri S, Abd Hamid SB (2014) Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res Int. https://doi.org/10.1155/2014/205636

    Article  CAS  Google Scholar 

  • Ramy SY, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil J Agr Res 72:590–594

    Article  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 33–58

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 73–97

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural nanotechnology: Concepts, benefits, and risks. In: Nanotechnology (eds. Prasad R, Kumar M, Kumar V), Springer Nature Singapore Pte Ltd. 1–17

    Google Scholar 

  • Scott NR and Chen H (2003) Nanoscale science and engineering or agriculture and food systems. Roadmap Report of National Planning Workshop 2002, 18–19 November, 2002, Washington, DC. http://www.nseafscornell.edu/webroadmap.pdf

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri-food systems. Intl J SociolAgricul Food 15:22–44

    Google Scholar 

  • Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    Article  CAS  Google Scholar 

  • Senthilkumar S, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92. https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shah MA, Towkeer A (2010) Principles of Nanosciences and nanotechnology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2:112–113

    Article  Google Scholar 

  • Shi Y, Xu Z, Feng J, Wang C (2006) Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim Feed Sci Technol 129:138–148

    Article  CAS  Google Scholar 

  • Solaiman S, Maloney M, Qureshi M, Davis G, D’Andrea G (2001) Effects of high copper supplements on performance, health, plasma copper and enzymes in goats. Small Ruminant Res 41:127–139

    Article  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579

    CAS  PubMed  Google Scholar 

  • Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981

    Article  PubMed  Google Scholar 

  • Tarafdar J, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12:219–226

    Article  Google Scholar 

  • Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, García SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal - Biotechnology of stinging capsules in nature’s waterblooms. Ann Tech Issue of State Agri Technologists Service Assoc., pp 1–18

    Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):1–10

    Article  CAS  Google Scholar 

  • Wani A, Shah M (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. Int J Appl Pharm Sci Res 2:4. https://doi.org/10.7324/JAPS20122307

    Article  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Natural Science Edition) 2:59–63

    Google Scholar 

  • Xu LQ, Li NN, Chen JC, Fu GD, Kang E-T (2015) Quaternized poly (2-(dimethylamino) ethyl methacrylate)-grafted agarose copolymers for multipurpose antibacterial applications. RSC Adv 5:61742–61751

    Article  CAS  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2016a) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  Google Scholar 

  • Yang L, Tang Z, Gao L, Li T, Chen Y, Liu L, Han L, Li X, Dong Q, Wei Q (2016b) The augmented prophylactic antibiotic could be more efficacious in patients undergoing transrectal prostate biopsy: a systematic review and meta-analysis. Int Urol Nephrol 48:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295:129–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tang H, Geng P, Wang Q, Jin L, Wu Z (2007) Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9:833–838

    Article  CAS  Google Scholar 

  • Zhao J, Harper A, Estienne M, Webb K Jr, McElroy A, Denbow D (2007) Growth performance and intestinal morphology responses in early weaned pigs to supplementation of antibiotic-free diets with an organic copper complex and spray-dried plasma protein in sanitary and nonsanitary environments. J Animal Sci 85:1302–1310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Ilakiya Sharanee Kumar for technical and graphical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani Nadarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadarajah, K. (2020). Advances in Agronanotechnology and Future Prospects. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Nanotechnology for Food, Agriculture, and Environment. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_5

Download citation

Publish with us

Policies and ethics